[Acetylcholine activation of alpha-ketoglutarate oxidation in liver mitochondria]. 1986

I V Shostakovskaia, and N M Doliba, and S K Gordiĭ, and A M Babskiĭ, and M N Kondrashova

Activation of alpha-ketoglutarate oxidation in the rat liver mitochondria takes place 15 and 30 min after intraperitoneal injection of acetyl choline. This mediator in doses of 25, 50 and 100 micrograms per 100 g of body weight causes a pronounced stimulation of phosphorylation respiration rate and calcium capacity of mitochondria with alpha-ketoglutarate oxidation. Acetyl choline is found to have a moderate inhibitory action on oxidation of lower (physiological) concentrations of succinate. Its stimulating action on alpha-ketoglutarate oxidation is associated with activation of M-cholinoreceptors; atropine, a choline-blocker, removes completely this effect. It is supposed that alpha-ketoglutarate and succinate are included into the composition of two reciprocal hormonal-substrate nucleotide systems.

UI MeSH Term Description Entries
D007656 Ketoglutaric Acids A family of compounds containing an oxo group with the general structure of 1,5-pentanedioic acid. (From Lehninger, Principles of Biochemistry, 1982, p442) Oxoglutarates,2-Ketoglutarate,2-Ketoglutaric Acid,2-Oxoglutarate,2-Oxoglutaric Acid,Calcium Ketoglutarate,Calcium alpha-Ketoglutarate,Ketoglutaric Acid,Oxogluric Acid,alpha-Ketoglutarate,alpha-Ketoglutaric Acid,alpha-Ketoglutaric Acid, Calcium Salt (2:1),alpha-Ketoglutaric Acid, Diammonium Salt,alpha-Ketoglutaric Acid, Dipotassium Salt,alpha-Ketoglutaric Acid, Disodium Salt,alpha-Ketoglutaric Acid, Monopotassium Salt,alpha-Ketoglutaric Acid, Monosodium Salt,alpha-Ketoglutaric Acid, Potassium Salt,alpha-Ketoglutaric Acid, Sodium Salt,alpha-Oxoglutarate,2 Ketoglutarate,2 Ketoglutaric Acid,2 Oxoglutarate,2 Oxoglutaric Acid,Calcium alpha Ketoglutarate,alpha Ketoglutarate,alpha Ketoglutaric Acid,alpha Ketoglutaric Acid, Diammonium Salt,alpha Ketoglutaric Acid, Dipotassium Salt,alpha Ketoglutaric Acid, Disodium Salt,alpha Ketoglutaric Acid, Monopotassium Salt,alpha Ketoglutaric Acid, Monosodium Salt,alpha Ketoglutaric Acid, Potassium Salt,alpha Ketoglutaric Acid, Sodium Salt,alpha Oxoglutarate,alpha-Ketoglutarate, Calcium
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine

Related Publications

I V Shostakovskaia, and N M Doliba, and S K Gordiĭ, and A M Babskiĭ, and M N Kondrashova
April 1966, Journal of biochemistry,
I V Shostakovskaia, and N M Doliba, and S K Gordiĭ, and A M Babskiĭ, and M N Kondrashova
September 1978, The Journal of biological chemistry,
I V Shostakovskaia, and N M Doliba, and S K Gordiĭ, and A M Babskiĭ, and M N Kondrashova
January 1994, Ukrainskii biokhimicheskii zhurnal (1978),
I V Shostakovskaia, and N M Doliba, and S K Gordiĭ, and A M Babskiĭ, and M N Kondrashova
January 1993, Fiziologicheskii zhurnal,
I V Shostakovskaia, and N M Doliba, and S K Gordiĭ, and A M Babskiĭ, and M N Kondrashova
February 1960, Biochimica et biophysica acta,
I V Shostakovskaia, and N M Doliba, and S K Gordiĭ, and A M Babskiĭ, and M N Kondrashova
September 1974, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan,
I V Shostakovskaia, and N M Doliba, and S K Gordiĭ, and A M Babskiĭ, and M N Kondrashova
May 1970, Biochemical and biophysical research communications,
I V Shostakovskaia, and N M Doliba, and S K Gordiĭ, and A M Babskiĭ, and M N Kondrashova
January 1968, Biokhimiia (Moscow, Russia),
I V Shostakovskaia, and N M Doliba, and S K Gordiĭ, and A M Babskiĭ, and M N Kondrashova
May 1972, Biochimica et biophysica acta,
I V Shostakovskaia, and N M Doliba, and S K Gordiĭ, and A M Babskiĭ, and M N Kondrashova
March 1969, Archives of biochemistry and biophysics,
Copied contents to your clipboard!