Hippocampus and trace conditioning of the rabbit's classically conditioned nictitating membrane response. 1986

P R Solomon, and E R Vander Schaaf, and R F Thompson, and D J Weisz

Rabbits received classical conditioning of the nictitating membrane response (NMR) in a trace conditioning paradigm. In this paradigm, a 250-ms tone conditioned stimulus (CS) occurs, after which there is a 500-ms period of time in which no stimuli occur (the trace interval), followed by a 100-ms air puff unconditioned stimulus (UCS). In Experiment 1, lesions of the hippocampus or cingulate/retrosplenial cortex disrupted acquisition of the long-latency or adaptive conditioned response relative to unoperated controls and animals that received neocortical lesions that spared the cingulate/retrosplenial areas. When animals with hippocampal or cingulate/retrosplenial lesions were switched to a standard delay paradigm in which the CS and UCS were contiguous in time, they acquired in about the same number of trials as naive rabbits. In a second experiment multiple-unit activity in area CA1 of the hippocampus was examined during acquisition of the trace conditioned response (CR). Three groups of animals were tested: animals that had a 500-ms trace interval (Group T-500), animals that received explicitly unpaired presentations of the CS and UCS (Group UP), and animals that underwent conditioning with a 2,000-ms trace interval (Group T-2000). Animals in Group T-500 acquired the CR in about 500 trials. Early in training, and well before any CRs occurred, there was a substantial increase in neuronal activity in the hippocampus that began during the CS and persisted through the trace interval. There was also an increase in the UCS period that modeled the amplitude-time course of the behavioral unconditioned response. Later in conditioning as CRs emerged, there was no longer neuronal bursting throughout the CS + trace period. Rather, the activity shifted to later in the trace interval and formed a model of the amplitude-time course of the behavioral CR. Activity during the UCS period was similar to that seen earlier in conditioning. Animals in Group UP showed no behavioral conditioning and no increase in neuronal activity. Animals in Group T-2000 showed no long-latency behavioral conditioning and no increase in neuronal activity. The data are discussed in terms of the role of the hippocampus in conditioning during situations in which the CS and UCS are not contiguous in time.

UI MeSH Term Description Entries
D008032 Limbic System A set of forebrain structures common to all mammals that is defined functionally and anatomically. It is implicated in the higher integration of visceral, olfactory, and somatic information as well as homeostatic responses including fundamental survival behaviors (feeding, mating, emotion). For most authors, it includes the AMYGDALA; EPITHALAMUS; GYRUS CINGULI; hippocampal formation (see HIPPOCAMPUS); HYPOTHALAMUS; PARAHIPPOCAMPAL GYRUS; SEPTAL NUCLEI; anterior nuclear group of thalamus, and portions of the basal ganglia. (Parent, Carpenter's Human Neuroanatomy, 9th ed, p744; NeuroNames, http://rprcsgi.rprc.washington.edu/neuronames/index.html (September 2, 1998)). Limbic Systems,System, Limbic,Systems, Limbic
D009541 Nictitating Membrane A fold of the mucous membrane of the CONJUNCTIVA in many animals. At rest, it is hidden in the medial canthus. It can extend to cover part or all of the cornea to help clean the CORNEA. Third Eyelid,Eyelid, Third,Eyelids, Third,Membrane, Nictitating,Membranes, Nictitating,Nictitating Membranes,Third Eyelids
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003214 Conditioning, Classical Learning that takes place when a conditioned stimulus is paired with an unconditioned stimulus. Reflex, Conditioned,Classical Conditioning,Classical Conditionings,Conditioned Reflex,Conditionings, Classical
D003215 Conditioning, Eyelid Reflex closure of the eyelid occurring as a result of classical conditioning. Eyelid Conditioning,Conditionings, Eyelid,Eyelid Conditionings
D006179 Gyrus Cinguli One of the convolutions on the medial surface of the CEREBRAL HEMISPHERES. It surrounds the rostral part of the brain and CORPUS CALLOSUM and forms part of the LIMBIC SYSTEM. Anterior Cingulate Gyrus,Brodmann Area 23,Brodmann Area 24,Brodmann Area 26,Brodmann Area 29,Brodmann Area 30,Brodmann Area 31,Brodmann Area 32,Brodmann Area 33,Brodmann's Area 23,Brodmann's Area 24,Brodmann's Area 26,Brodmann's Area 29,Brodmann's Area 30,Brodmann's Area 31,Brodmann's Area 32,Brodmann's Area 33,Cingulate Gyrus,Gyrus Cinguli Anterior,Retrosplenial Complex,Retrosplenial Cortex,Anterior Cingulate,Anterior Cingulate Cortex,Cingular Gyrus,Cingulate Area,Cingulate Body,Cingulate Cortex,Cingulate Region,Gyrus, Cingulate,Posterior Cingulate,Posterior Cingulate Cortex,Posterior Cingulate Gyri,Posterior Cingulate Gyrus,Posterior Cingulate Region,Superior Mesial Regions,24, Brodmann Area,Anterior Cingulate Cortices,Anterior Cingulates,Anterior, Gyrus Cinguli,Anteriors, Gyrus Cinguli,Area 23, Brodmann,Area 23, Brodmann's,Area 24, Brodmann,Area 24, Brodmann's,Area 26, Brodmann,Area 26, Brodmann's,Area 29, Brodmann,Area 29, Brodmann's,Area 30, Brodmann,Area 30, Brodmann's,Area 31, Brodmann,Area 31, Brodmann's,Area 32, Brodmann,Area 32, Brodmann's,Area 33, Brodmann,Area 33, Brodmann's,Area, Cingulate,Body, Cingulate,Brodmanns Area 23,Brodmanns Area 24,Brodmanns Area 26,Brodmanns Area 29,Brodmanns Area 30,Brodmanns Area 31,Brodmanns Area 32,Brodmanns Area 33,Cingulate Areas,Cingulate Bodies,Cingulate Cortex, Anterior,Cingulate Cortex, Posterior,Cingulate Gyrus, Anterior,Cingulate Gyrus, Posterior,Cingulate Region, Posterior,Cingulate Regions,Cingulate, Anterior,Cingulate, Posterior,Cinguli Anterior, Gyrus,Cinguli Anteriors, Gyrus,Complex, Retrosplenial,Cortex, Anterior Cingulate,Cortex, Cingulate,Cortex, Posterior Cingulate,Cortex, Retrosplenial,Gyrus Cinguli Anteriors,Gyrus, Anterior Cingulate,Gyrus, Cingular,Gyrus, Posterior Cingulate,Posterior Cingulate Cortices,Posterior Cingulate Regions,Posterior Cingulates,Region, Cingulate,Region, Posterior Cingulate,Retrosplenial Complices,Retrosplenial Cortices,Superior Mesial Region
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P R Solomon, and E R Vander Schaaf, and R F Thompson, and D J Weisz
October 1988, Behavioral neuroscience,
P R Solomon, and E R Vander Schaaf, and R F Thompson, and D J Weisz
April 1977, Journal of comparative and physiological psychology,
P R Solomon, and E R Vander Schaaf, and R F Thompson, and D J Weisz
April 1987, Behavioral neuroscience,
P R Solomon, and E R Vander Schaaf, and R F Thompson, and D J Weisz
May 1973, Journal of comparative and physiological psychology,
P R Solomon, and E R Vander Schaaf, and R F Thompson, and D J Weisz
February 1974, Journal of experimental psychology,
P R Solomon, and E R Vander Schaaf, and R F Thompson, and D J Weisz
April 1992, Journal of experimental psychology. Animal behavior processes,
P R Solomon, and E R Vander Schaaf, and R F Thompson, and D J Weisz
February 1995, Behavioral neuroscience,
P R Solomon, and E R Vander Schaaf, and R F Thompson, and D J Weisz
February 1985, Behavioral neuroscience,
P R Solomon, and E R Vander Schaaf, and R F Thompson, and D J Weisz
January 1985, Pharmacology, biochemistry, and behavior,
P R Solomon, and E R Vander Schaaf, and R F Thompson, and D J Weisz
June 1983, Brain research bulletin,
Copied contents to your clipboard!