Dynamics of noradrenergic circadian input to the chicken pineal gland. 1986

V M Cassone, and J S Takahashi, and C D Blaha, and R F Lane, and M Menaker

To analyze the dynamics of sympathetic input to the chicken pineal the concentrations of catecholamines, indoleamines and some of their metabolites were determined by high performance liquid chromatography with electrochemical detection (HPLC-EC) in the pineal glands of young chickens killed at different times of day. Rhythmic variations over 24 h were observed in tissue levels of dopamine (DA), 5-hydroxytryptamine (5-HT), N-acetylserotonin (NAS) and 5-hydroxyindoleacetic acid (5-HIAA), while norepinephrine (NE) concentrations exhibited no significant change. DA content peaked 2 h after onset of darkness and NAS was detectable only during the night. A bimodal pattern of 5-HT and 5-HIAA levels was observed with peak tissue levels occurring at dawn and dusk. To determine the possible differential effects of light on these biogenic amines, birds were sacrificed at midday, midnight and at midnight following a 1 h exposure to light, and their pineals processed for HPLC-EC. NE, DA and 5-HT levels were similar at midday and midnight, while 5-HIAA and NAS were elevated during the night. Midnight illumination decreased NE and NAS levels, increased 5-HT and 5-HIAA levels and had no effect on DA levels. Temporal variations in NE turnover were determined by pretreating young chickens with alpha-methyl-p-tyrosine, a tyrosine hydroxylase inhibitor, and measuring the rates of decline in NE content over 2 h at midday and midnight in birds held on light cycles and at mid-subjective day in birds held in constant darkness (DD).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010870 Pineal Gland A light-sensitive neuroendocrine organ attached to the roof of the THIRD VENTRICLE of the brain. The pineal gland secretes MELATONIN, other BIOGENIC AMINES and NEUROPEPTIDES. Epiphysis Cerebri,Pineal Body,Corpus Pineale,Gland, Pineal,Pineal Bodies,Pineal Glands
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D013564 Sympathetic Nervous System The thoracolumbar division of the autonomic nervous system. Sympathetic preganglionic fibers originate in neurons of the intermediolateral column of the spinal cord and project to the paravertebral and prevertebral ganglia, which in turn project to target organs. The sympathetic nervous system mediates the body's response to stressful situations, i.e., the fight or flight reactions. It often acts reciprocally to the parasympathetic system. Nervous System, Sympathetic,Nervous Systems, Sympathetic,Sympathetic Nervous Systems,System, Sympathetic Nervous,Systems, Sympathetic Nervous

Related Publications

V M Cassone, and J S Takahashi, and C D Blaha, and R F Lane, and M Menaker
July 1990, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
V M Cassone, and J S Takahashi, and C D Blaha, and R F Lane, and M Menaker
April 2001, Microscopy research and technique,
V M Cassone, and J S Takahashi, and C D Blaha, and R F Lane, and M Menaker
April 1997, Journal of pineal research,
V M Cassone, and J S Takahashi, and C D Blaha, and R F Lane, and M Menaker
November 1979, Nature,
V M Cassone, and J S Takahashi, and C D Blaha, and R F Lane, and M Menaker
August 1967, The Journal-lancet,
V M Cassone, and J S Takahashi, and C D Blaha, and R F Lane, and M Menaker
April 2009, Annals of the New York Academy of Sciences,
V M Cassone, and J S Takahashi, and C D Blaha, and R F Lane, and M Menaker
April 2005, Annals of the New York Academy of Sciences,
V M Cassone, and J S Takahashi, and C D Blaha, and R F Lane, and M Menaker
October 1981, The American journal of anatomy,
V M Cassone, and J S Takahashi, and C D Blaha, and R F Lane, and M Menaker
April 1998, General and comparative endocrinology,
V M Cassone, and J S Takahashi, and C D Blaha, and R F Lane, and M Menaker
February 2012, Molecular and cellular endocrinology,
Copied contents to your clipboard!