Cerebellar cortical activity during stretch of antagonist muscles. 1986

D Bourbonnais, and C Krieger, and A M Smith

Single unit activity was recorded from the anterior lobe of the cerebellum during ramp and hold stretches of limb muscles in chloralose anesthetized cats. The activity of 95 "phasic" units showed a transient response during dynamic stretch of at least one muscle usually lasting for less than 350 ms following the stimulus onset. The activity of 59 phasic-tonic units was modified not only during dynamic stretch but also during the 1 s of maintained muscle length. All Purkinje cells, identified by their complex spikes, that responded to muscle stretch demonstrated exclusively phasic changes in discharge. Fourteen of 25 Purkinje cells (56%) responded to stretch of both antagonist muscles and these responses were always similar rather than reciprocal. From the 129 units without complex spikes, 70 demonstrated phasic discharge patterns whereas 59 had tonic responses. Seventy-five (59%) of these unidentified units revealed convergent responses to stretch of both antagonists, compared with 54 which responded to stretch of one muscle only. Of the unidentified units receiving convergent afferents from antagonist muscles, 62 (83%) had similar responses and only 13 (17%) had reciprocal reactions. There appeared to be no evidence that muscle afferents alone can induce reciprocal discharge patterns in Purkinje neurons of the cerebellar cortex. The firing frequency of some phasic-tonic units was correlated with both the velocity and amplitude of muscle stretch. No Purkinje cells were found with activity related to either velocity or amplitude of muscle stretch. One phasic and seven phasic-tonic unidentified units were activated at fixed latencies following trains of electrical stimulation applied to the thoracic spinal cord at frequencies exceeding 200 Hz, implying they were terminal portions of mossy fibers originating from direct spinocerebellar tracts. A few recordings of compound potentials were presumed to arise from the cerebellar glomeruli. The changing form of one of these potentials suggested that the glomerulus might be a site at which somatosensory peripheral information is modified by the cerebellar cortex.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D Bourbonnais, and C Krieger, and A M Smith
January 1984, Journal of neurophysiology,
D Bourbonnais, and C Krieger, and A M Smith
August 1985, Journal of neurophysiology,
D Bourbonnais, and C Krieger, and A M Smith
October 1955, Annals of physical medicine,
D Bourbonnais, and C Krieger, and A M Smith
January 1995, Annals of neurology,
D Bourbonnais, and C Krieger, and A M Smith
January 1975, Fiziolohichnyi zhurnal,
D Bourbonnais, and C Krieger, and A M Smith
December 1983, Journal of neurophysiology,
D Bourbonnais, and C Krieger, and A M Smith
May 2008, Experimental brain research,
D Bourbonnais, and C Krieger, and A M Smith
February 2023, Journal of the mechanical behavior of biomedical materials,
D Bourbonnais, and C Krieger, and A M Smith
January 1980, Journal of biomechanics,
Copied contents to your clipboard!