Mixed infections in genotypic drug-resistant Mycobacterium tuberculosis. 2023

Linfeng Wang, and Susana Campino, and Jody Phelan, and Taane G Clark
Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK.

Tuberculosis disease (TB), caused by Mycobacterium tuberculosis, is a major global public health problem, resulting in more than 1 million deaths each year. Drug resistance (DR), including multi-drug (MDR-TB), is making TB control difficult and accounts for 16% of new and 48% of previously treated cases. To further complicate treatment decision-making, many clinical studies have reported patients harbouring multiple distinct strains of M. tuberculosis across the main lineages (L1 to L4). The extent to which drug-resistant strains can be deconvoluted within mixed strain infection samples is understudied. Here, we analysed M. tuberculosis isolates with whole genome sequencing data (n = 50,723), which covered the main lineages (L1 9.1%, L2 27.6%, L3 11.8%, L4 48.3%), with genotypic resistance to isoniazid (HR-TB; n = 9546 (29.2%)), rifampicin (RR-TB; n = 7974 (24.4%)), and at least MDR-TB (n = 5385 (16.5%)). TB-Profiler software revealed 531 (1.0%) isolates with potential mixed sub-lineage infections, including some with DR mutations (RR-TB 21/531; HR-TB 59/531; at least MDR-TB 173/531). To assist with the deconvolution of such mixtures, we adopted and evaluated a statistical Gaussian Mixture model (GMM) approach. By simulating 240 artificial mixtures of different ratios from empirical data across L1 to L4, a GMM approach was able to accurately estimate the DR profile of each lineage, with a low error rate for the estimated mixing proportions (mean squared error 0.012) and high accuracy for the DR predictions (93.5%). Application of the GMM model to the clinical mixtures (n = 531), found that 33.3% (188/531) of samples consisted of DR and sensitive lineages, 20.2% (114/531) consisted of lineages with only DR mutations, and 40.6% (229/531) consisted of lineages with genotypic pan-susceptibility. Overall, our work demonstrates the utility of combined whole genome sequencing data and GMM statistical analysis approaches for providing insights into mono and mixed M. tuberculosis infections, thereby potentially assisting diagnosis, treatment decision-making, drug resistance and transmission mapping for infection control.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009169 Mycobacterium tuberculosis A species of gram-positive, aerobic bacteria that produces TUBERCULOSIS in humans, other primates, CATTLE; DOGS; and some other animals which have contact with humans. Growth tends to be in serpentine, cordlike masses in which the bacilli show a parallel orientation. Mycobacterium tuberculosis H37Rv
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000995 Antitubercular Agents Drugs used in the treatment of tuberculosis. They are divided into two main classes: "first-line" agents, those with the greatest efficacy and acceptable degrees of toxicity used successfully in the great majority of cases; and "second-line" drugs used in drug-resistant cases or those in which some other patient-related condition has compromised the effectiveness of primary therapy. Anti-Tuberculosis Agent,Anti-Tuberculosis Agents,Anti-Tuberculosis Drug,Anti-Tuberculosis Drugs,Antitubercular Agent,Antitubercular Drug,Tuberculostatic Agent,Tuberculostatic Agents,Antitubercular Drugs,Agent, Anti-Tuberculosis,Agent, Antitubercular,Agent, Tuberculostatic,Anti Tuberculosis Agent,Anti Tuberculosis Agents,Anti Tuberculosis Drug,Anti Tuberculosis Drugs,Drug, Anti-Tuberculosis,Drug, Antitubercular
D014376 Tuberculosis Any of the infectious diseases of man and other animals caused by species of MYCOBACTERIUM TUBERCULOSIS. Koch's Disease,Kochs Disease,Mycobacterium tuberculosis Infection,Infection, Mycobacterium tuberculosis,Infections, Mycobacterium tuberculosis,Koch Disease,Mycobacterium tuberculosis Infections,Tuberculoses
D060085 Coinfection Simultaneous infection of a host organism by two or more pathogens. In virology, coinfection commonly refers to simultaneous infection of a single cell by two or more different viruses. Mixed Infection,Co-infection,Polymicrobial Infection,Secondary Infection,Secondary Infections,Co infection,Co-infections,Coinfections,Infection, Mixed,Infection, Polymicrobial,Infection, Secondary,Infections, Mixed,Infections, Polymicrobial,Infections, Secondary,Mixed Infections,Polymicrobial Infections
D018088 Tuberculosis, Multidrug-Resistant Tuberculosis resistant to chemotherapy with two or more ANTITUBERCULAR AGENTS, including at least ISONIAZID and RIFAMPICIN. The problem of resistance is particularly troublesome in tuberculous OPPORTUNISTIC INFECTIONS associated with HIV INFECTIONS. It requires the use of second line drugs which are more toxic than the first line regimens. TB with isolates that have developed further resistance to at least three of the six classes of second line drugs is defined as EXTENSIVELY DRUG-RESISTANT TUBERCULOSIS. Tuberculosis, Drug-Resistant,Tuberculosis, MDR,Tuberculosis, Multi-Drug Resistant,Drug-Resistant Tuberculosis,MDR Tuberculosis,Multi-Drug Resistant Tuberculosis,Multidrug-Resistant Tuberculosis,Tuberculosis, Drug Resistant,Tuberculosis, Multi Drug Resistant,Tuberculosis, Multidrug Resistant
D024901 Drug Resistance, Multiple, Bacterial The ability of bacteria to resist or to become tolerant to several structurally and functionally distinct drugs simultaneously. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Drug Resistance, Extensive, Bacterial,Drug Resistance, Extensively, Bacterial,Extensive Antibacterial Drug Resistance,Extensively Antibacterial Drug Resistance,Multidrug Resistance, Bacterial,Multiple Antibacterial Drug Resistance,Bacterial Multidrug Resistance,Bacterial Multidrug Resistances,Resistance, Bacterial Multidrug

Related Publications

Linfeng Wang, and Susana Campino, and Jody Phelan, and Taane G Clark
January 1998, Tubercle and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease,
Linfeng Wang, and Susana Campino, and Jody Phelan, and Taane G Clark
October 2008, Diagnostic microbiology and infectious disease,
Linfeng Wang, and Susana Campino, and Jody Phelan, and Taane G Clark
July 2016, BMC microbiology,
Linfeng Wang, and Susana Campino, and Jody Phelan, and Taane G Clark
March 2016, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy,
Linfeng Wang, and Susana Campino, and Jody Phelan, and Taane G Clark
January 2009, The Journal of antimicrobial chemotherapy,
Linfeng Wang, and Susana Campino, and Jody Phelan, and Taane G Clark
September 1970, The New England journal of medicine,
Linfeng Wang, and Susana Campino, and Jody Phelan, and Taane G Clark
June 1993, The Medical journal of Malaysia,
Linfeng Wang, and Susana Campino, and Jody Phelan, and Taane G Clark
July 1965, Naika. Internal medicine,
Linfeng Wang, and Susana Campino, and Jody Phelan, and Taane G Clark
June 2015, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases,
Linfeng Wang, and Susana Campino, and Jody Phelan, and Taane G Clark
April 2015, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease,
Copied contents to your clipboard!