Primary and secondary chloride transport in Halobacterium halobium. 1986

A Duschl, and G Wagner

Chloride uptake in intact cells of Halobacterium halobium was characterized by rates of influx and efflux of 36Cl- under conditions of light, respiration, or both. Halobacterial mutant strains with and without retinal transport proteins allowed study of the effects of halorhodopsin and bacteriorhodopsin under illumination. Two structurally independent chloride transport systems could be distinguished: halorhodopsin, the already known light-driven chloride pump, and a newly described secondary uptake system, which was energized by respiration or by light via bacteriorhodopsin.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D006217 Halobacterium A genus of HALOBACTERIACEAE whose growth requires a high concentration of salt. Binary fission is by constriction.
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001436 Bacteriorhodopsins Rhodopsins found in the PURPLE MEMBRANE of halophilic archaea such as HALOBACTERIUM HALOBIUM. Bacteriorhodopsins function as an energy transducers, converting light energy into electrochemical energy via PROTON PUMPS. Bacteriorhodopsin
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D025602 Halorhodopsins Light driven chloride ion pumps that are ubiquitously found in halophilic archaea (HALOBACTERIALES). Halorhodopsin,9-cis-Halorhodopsin,Halorhodopsin Chromoprotein,9 cis Halorhodopsin

Related Publications

A Duschl, and G Wagner
January 1979, Methods in enzymology,
A Duschl, and G Wagner
January 1980, Journal of supramolecular structure,
A Duschl, and G Wagner
February 1978, Archives of biochemistry and biophysics,
A Duschl, and G Wagner
June 1979, The Journal of biological chemistry,
A Duschl, and G Wagner
February 1953, Journal of general microbiology,
A Duschl, and G Wagner
March 1977, Biochimica et biophysica acta,
A Duschl, and G Wagner
April 1974, Proceedings of the National Academy of Sciences of the United States of America,
A Duschl, and G Wagner
December 1987, Journal of bacteriology,
A Duschl, and G Wagner
May 1977, Federation proceedings,
A Duschl, and G Wagner
January 1982, The EMBO journal,
Copied contents to your clipboard!