Intersubunit transfer of fatty acyl groups during fatty acid reduction. 1986

L Wall, and A Rodriguez, and E Meighen

Fatty acid reduction in Photobacterium phosphoreum is catalyzed in a coupled reaction by two enzymes: acyl-protein synthetase, which activates fatty acids (+ATP), and a reductase, which reduces activated fatty acids (+NADPH) to aldehyde. Although the synthetase and reductase can be acylated with fatty acid (+ATP) and acyl-CoA, respectively, evidence for acyl transfer between these proteins has not yet been obtained. Experimental conditions have now been developed to increase significantly (5-30-fold) the level of protein acylation so that 0.4-0.8 mol of fatty acyl groups are incorporated per mole of the synthetase or reductase subunit. The acylated reductase polypeptide migrated faster on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than the unlabeled polypeptide, with a direct 1 to 1 correspondence between the moles of acyl group incorporated and the moles of polypeptide migrating at this new position. The presence of 2-mercaptoethanol or NADPH, but not NADP, substantially decreased labeling of the reductase enzyme, and kinetic studies demonstrated that the rate of covalent incorporation of the acyl group was 3-5 times slower than its subsequent reduction with NADPH to aldehyde. When mixtures of the synthetase and reductase polypeptides were incubated with [3H] tetradecanoic acid (+ATP) or [3H]tetradecanoyl-CoA, both polypeptides were acylated to high levels, with the labeling again being decreased by 2-mercaptoethanol or NADPH. These results have demonstrated that acylation of the reductase represents an intermediate and rate-limiting step in fatty acid reduction. Moreover, the activated acyl groups are transferred in a reversible reaction between the synthetase and reductase proteins in the enzyme mechanism.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008623 Mercaptoethanol A water-soluble thiol derived from hydrogen sulfide and ethanol. It is used as a reducing agent for disulfide bonds and to protect sulfhydryl groups from oxidation. 2-ME,2-Mercaptoethanol,2 Mercaptoethanol
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D000214 Acyl Coenzyme A S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation. Acyl CoA,Fatty Acyl CoA,Long-Chain Acyl CoA,Acyl CoA, Fatty,Acyl CoA, Long-Chain,CoA, Acyl,CoA, Fatty Acyl,CoA, Long-Chain Acyl,Coenzyme A, Acyl,Long Chain Acyl CoA
D000215 Acylation The addition of an organic acid radical into a molecule.
D000217 Acyltransferases Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3. Acyltransferase
D000445 Aldehyde Oxidoreductases Oxidoreductases that are specific for ALDEHYDES. Aldehyde Oxidoreductase,Oxidoreductase, Aldehyde,Oxidoreductases, Aldehyde

Related Publications

L Wall, and A Rodriguez, and E Meighen
June 1980, Biochemical and biophysical research communications,
L Wall, and A Rodriguez, and E Meighen
January 1973, Atherosclerosis,
L Wall, and A Rodriguez, and E Meighen
January 1989, Neurochemistry international,
L Wall, and A Rodriguez, and E Meighen
February 1953, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
L Wall, and A Rodriguez, and E Meighen
November 2011, FEBS letters,
L Wall, and A Rodriguez, and E Meighen
January 1985, The Journal of biological chemistry,
Copied contents to your clipboard!