Kinetic analysis of the triggered exocytosis/endocytosis secretory cycle in cultured bovine adrenal medullary cells. 1986

H von Grafenstein, and C S Roberts, and P F Baker

Cultured bovine adrenal medullary cells are an excellent preparation for quantitative analysis of the secretory exocytosis/endocytosis cycle. In this paper we examine the kinetics of endocytosis after stimulation of secretion. Membrane retrieval was monitored by uptake of the fluid phase marker horseradish peroxidase. Horseradish peroxidase was found to be suitable because it can be washed off completely, assayed quantitatively, and its uptake increases linearly with concentration. If this marker is present during stimulation, the rate of uptake is initially slower than catecholamine secretion but faster at a later time, suggesting that the formation of endocytotic vesicles follows exocytosis. To monitor the time-dependent concentration of secretory vesicle-plasma membrane fusion product (omega-profiles), secretion was halted at various time intervals after stimulation and the excess membrane allowed to transform into endocytotic vesicles in the presence of horseradish peroxidase. By adding horseradish peroxidase at various times after inhibition of secretion, the time course of membrane retrieval could be measured directly. All our results are consistent with a two-step kinetic model in which exocytosis and membrane retrieval are consecutive events. The estimated volumes of the compartments involved are roughly equal. The rate of endocytosis is strongly temperature-dependent but unaffected by extracellular calcium in the range of 10(-8)-2.5 X 10(-3) M, suggesting that calcium is not required at the site of endocytotic membrane fusion. Membrane retrieval is also unaffected by Lanthanum (1 mM) but is slowed by hypertonic media.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000313 Adrenal Medulla The inner portion of the adrenal gland. Derived from ECTODERM, adrenal medulla consists mainly of CHROMAFFIN CELLS that produces and stores a number of NEUROTRANSMITTERS, mainly adrenaline (EPINEPHRINE) and NOREPINEPHRINE. The activity of the adrenal medulla is regulated by the SYMPATHETIC NERVOUS SYSTEM. Adrenal Medullas,Medulla, Adrenal,Medullas, Adrenal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H von Grafenstein, and C S Roberts, and P F Baker
December 1983, The Journal of cell biology,
H von Grafenstein, and C S Roberts, and P F Baker
December 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
H von Grafenstein, and C S Roberts, and P F Baker
January 2019, Methods in molecular biology (Clifton, N.J.),
H von Grafenstein, and C S Roberts, and P F Baker
August 1990, The Journal of biological chemistry,
H von Grafenstein, and C S Roberts, and P F Baker
September 1980, Journal de physiologie,
H von Grafenstein, and C S Roberts, and P F Baker
May 1990, Journal of neurochemistry,
H von Grafenstein, and C S Roberts, and P F Baker
November 1979, The Journal of physiology,
H von Grafenstein, and C S Roberts, and P F Baker
December 1992, The Journal of pharmacology and experimental therapeutics,
H von Grafenstein, and C S Roberts, and P F Baker
August 1995, Journal of neurochemistry,
Copied contents to your clipboard!