Age-Dependent Sex Differences in Perineuronal Nets in an APP Mouse Model of Alzheimer's Disease Are Brain Region-Specific. 2023

Rayane Rahmani, and Naiomi Rambarack, and Jaijeet Singh, and Andrew Constanti, and Afia B Ali
UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.

Alzheimer's disease (AD) is the most common form of dementia, which disproportionately affects women. AD symptoms include progressive memory loss associated with amyloid-β (Aβ) plaques and dismantled synaptic mechanisms. Perineuronal nets (PNNs) are important components of the extracellular matrix with a critical role in synaptic stabilisation and have been shown to be influenced by microglia, which enter an activated state during AD. This study aimed to investigate whether sex differences affected the density of PNNs alongside the labelling of microglia and Aβ plaques density.We performed neurochemistry experiments using acute brain slices from both sexes of the APP mouse model of AD, aged-matched (2-5 and 12-16 months) to wild-type mice, combined with a weighted gene co-expression network analysis (WGCNA). The lateral entorhinal cortex (LEC) and hippocampal CA1, which are vulnerable during early AD pathology, were investigated and compared to the presubiculum (PRS), a region unscathed by AD pathology. The highest density of PNNs was found in the LEC and PRS regions of aged APP mice with a region-specific sex differences. Analysis of the CA1 region using multiplex-fluorescent images from aged APP mice showed regions of dense Aβ plaques near clusters of CD68, indicative of activated microglia and PNNs. This was consistent with the results of WGCNA performed on normalised data on microglial cells isolated from age-matched, late-stage male and female wild-type and APP knock-in mice, which revealed one microglial module that showed differential expression associated with tissue, age, genotype, and sex, which showed enrichment for fc-receptor-mediated phagocytosis. Our data are consistent with the hypothesis that sex-related differences contribute to a disrupted interaction between PNNs and microglia in specific brain regions associated with AD pathogenesis.

UI MeSH Term Description Entries
D008297 Male Males
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly
D000544 Alzheimer Disease A degenerative disease of the BRAIN characterized by the insidious onset of DEMENTIA. Impairment of MEMORY, judgment, attention span, and problem solving skills are followed by severe APRAXIAS and a global loss of cognitive abilities. The condition primarily occurs after age 60, and is marked pathologically by severe cortical atrophy and the triad of SENILE PLAQUES; NEUROFIBRILLARY TANGLES; and NEUROPIL THREADS. (From Adams et al., Principles of Neurology, 6th ed, pp1049-57) Acute Confusional Senile Dementia,Alzheimer's Diseases,Dementia, Alzheimer Type,Dementia, Senile,Presenile Alzheimer Dementia,Senile Dementia, Alzheimer Type,Alzheimer Dementia,Alzheimer Disease, Early Onset,Alzheimer Disease, Late Onset,Alzheimer Sclerosis,Alzheimer Syndrome,Alzheimer Type Senile Dementia,Alzheimer's Disease,Alzheimer's Disease, Focal Onset,Alzheimer-Type Dementia (ATD),Dementia, Presenile,Dementia, Primary Senile Degenerative,Early Onset Alzheimer Disease,Familial Alzheimer Disease (FAD),Focal Onset Alzheimer's Disease,Late Onset Alzheimer Disease,Primary Senile Degenerative Dementia,Senile Dementia, Acute Confusional,Alzheimer Dementias,Alzheimer Disease, Familial (FAD),Alzheimer Diseases,Alzheimer Type Dementia,Alzheimer Type Dementia (ATD),Alzheimers Diseases,Dementia, Alzheimer,Dementia, Alzheimer-Type (ATD),Familial Alzheimer Diseases (FAD),Presenile Dementia,Sclerosis, Alzheimer,Senile Dementia
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012727 Sex Characteristics Those characteristics that distinguish one SEX from the other. The primary sex characteristics are the OVARIES and TESTES and their related hormones. Secondary sex characteristics are those which are masculine or feminine but not directly related to reproduction. Gender Characteristics,Gender Differences,Gender Dimorphism,Sex Differences,Sex Dimorphism,Sexual Dichromatism,Sexual Dimorphism,Characteristic, Gender,Characteristic, Sex,Dichromatism, Sexual,Dichromatisms, Sexual,Difference, Sex,Dimorphism, Gender,Dimorphism, Sex,Dimorphism, Sexual,Gender Characteristic,Gender Difference,Gender Dimorphisms,Sex Characteristic,Sex Difference,Sex Dimorphisms,Sexual Dichromatisms,Sexual Dimorphisms

Related Publications

Rayane Rahmani, and Naiomi Rambarack, and Jaijeet Singh, and Andrew Constanti, and Afia B Ali
January 2018, Neurochemistry international,
Rayane Rahmani, and Naiomi Rambarack, and Jaijeet Singh, and Andrew Constanti, and Afia B Ali
August 2020, EBioMedicine,
Rayane Rahmani, and Naiomi Rambarack, and Jaijeet Singh, and Andrew Constanti, and Afia B Ali
February 2018, Neurobiology of aging,
Rayane Rahmani, and Naiomi Rambarack, and Jaijeet Singh, and Andrew Constanti, and Afia B Ali
February 2016, Neurotoxicity research,
Rayane Rahmani, and Naiomi Rambarack, and Jaijeet Singh, and Andrew Constanti, and Afia B Ali
May 2019, Seminars in cell & developmental biology,
Rayane Rahmani, and Naiomi Rambarack, and Jaijeet Singh, and Andrew Constanti, and Afia B Ali
May 1999, Archives of histology and cytology,
Rayane Rahmani, and Naiomi Rambarack, and Jaijeet Singh, and Andrew Constanti, and Afia B Ali
March 2021, Scientific reports,
Rayane Rahmani, and Naiomi Rambarack, and Jaijeet Singh, and Andrew Constanti, and Afia B Ali
January 2022, Frontiers in aging neuroscience,
Rayane Rahmani, and Naiomi Rambarack, and Jaijeet Singh, and Andrew Constanti, and Afia B Ali
October 2018, Neuroscience bulletin,
Rayane Rahmani, and Naiomi Rambarack, and Jaijeet Singh, and Andrew Constanti, and Afia B Ali
November 2010, Molecular brain,
Copied contents to your clipboard!