Microwave Heating for Synthesis of Carbonaceous Adsorbents for Removal of Toxic Organic and Inorganic Contaminants. 2023

Aleksandra Bazan-Wozniak, and Katarzyna Machelak, and Agnieszka Nosal-Wiercińska, and Robert Pietrzak
Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.

The residues obtained from the extraction of Inonotus obliquus fungus were used to produce carbonaceous adsorbents. The initial material was subjected to pyrolysis in a microwave oven. The adsorbents were characterized through elemental analysis, low-temperature nitrogen adsorption/desorption isotherms, and Boehm titration. The carbonaceous adsorbents were tested for the removal of NO2, methylene blue, and malachite green. The results indicated that the obtained carbonaceous adsorbents exhibited basic characteristics and possessed specific surface areas of 372 and 502 m2/g. The adsorption process of liquid contaminants was modeled using the single-layer Langmuir model. The maximum adsorption capacities were found to be 101 and 109 mg/g for methylene blue, and 75 and 77 mg/g for malachite green. The kinetic study demonstrated that the adsorption of methylene blue and malachite green was better described by a pseudo-second order model. The study affirmed that the adsorption of organic dyes onto the resultant carbonaceous adsorbents was both spontaneous and endothermic. The study also demonstrated that the presence of an air stream during the NO2 adsorption process and prehumidization of the adsorbent with humid air had a beneficial effect on the obtained sorption capacities. In conclusion, the study demonstrated that pyrolysis of the extraction residues from the fungus Inonotus obliquus yields highly effective, environmentally friendly, and cost-efficient carbonaceous adsorbents for the removal of both gaseous and liquid pollutants.

UI MeSH Term Description Entries

Related Publications

Aleksandra Bazan-Wozniak, and Katarzyna Machelak, and Agnieszka Nosal-Wiercińska, and Robert Pietrzak
February 2011, Journal of hazardous materials,
Aleksandra Bazan-Wozniak, and Katarzyna Machelak, and Agnieszka Nosal-Wiercińska, and Robert Pietrzak
September 2018, Journal of hazardous materials,
Aleksandra Bazan-Wozniak, and Katarzyna Machelak, and Agnieszka Nosal-Wiercińska, and Robert Pietrzak
January 2024, Chemphyschem : a European journal of chemical physics and physical chemistry,
Aleksandra Bazan-Wozniak, and Katarzyna Machelak, and Agnieszka Nosal-Wiercińska, and Robert Pietrzak
June 2022, The Science of the total environment,
Aleksandra Bazan-Wozniak, and Katarzyna Machelak, and Agnieszka Nosal-Wiercińska, and Robert Pietrzak
May 2021, Chemosphere,
Aleksandra Bazan-Wozniak, and Katarzyna Machelak, and Agnieszka Nosal-Wiercińska, and Robert Pietrzak
November 2004, Angewandte Chemie (International ed. in English),
Aleksandra Bazan-Wozniak, and Katarzyna Machelak, and Agnieszka Nosal-Wiercińska, and Robert Pietrzak
June 2002, Chemosphere,
Aleksandra Bazan-Wozniak, and Katarzyna Machelak, and Agnieszka Nosal-Wiercińska, and Robert Pietrzak
August 2019, Journal of environmental management,
Aleksandra Bazan-Wozniak, and Katarzyna Machelak, and Agnieszka Nosal-Wiercińska, and Robert Pietrzak
September 2022, Environmental research,
Aleksandra Bazan-Wozniak, and Katarzyna Machelak, and Agnieszka Nosal-Wiercińska, and Robert Pietrzak
August 2022, Materials (Basel, Switzerland),
Copied contents to your clipboard!