Bhlhe40 limits early IL-10 production from CD4+ T cells during Plasmodium yoelii 17X infection. 2023

Kara A O'Neal, and Sheldon L Zeltner, and Camille L Foscue, and Jason S Stumhofer
Department of Microbiology and Immunology, University of Arkansas for Medical Sciences , Little Rock, Arkansas, USA.

The cytokine IL-10 suppresses T-cell-mediated immunity, which is required to control infection with Plasmodium yoelii. Consequently, IL-10 can delay the time needed to resolve this infection, leading to a higher parasite burden. While the pathways that lead to IL-10 production by CD4+ T cells are well defined, much less is known about the mediators that suppress the expression of this potent anti-inflammatory cytokine. Here, we show that the transcription factor basic helix-loop-helix family member e40 (Bhlhe40) contributes to controlling parasite burden in response to P. yoelii infection in mice. Loss of Bhlhe40 expression in mice results in higher Il10 expression, higher peak parasitemia, and a delay in parasite clearance. The observed phenotype was not due to defects in T-cell activation and proliferation or the humoral response. Nor was it due to changes in regulatory T-cell numbers. However, blocking IL-10 signaling reversed the outcome in Bhlhe40 - mice, suggesting that excess IL-10 production limits their ability to control the infection properly. In addition to suppressing Il10 expression in CD4+ T cells, Bhlhe40 can promote Ifng expression. Indeed, IFN-γ production by CD4+ T cells isolated from the liver was significantly affected by the loss of Bhlhe40. Lastly, Bhlhe40 deletion in T cells resulted in a phenotype similar to that observed in the Bhlhe40 - mice, indicating that Bhlhe40 expression in T cells contributes to the ability of mice to control infection with P. yoelii.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010967 Plasmodium yoelii A species of PLASMODIUM causing malaria in rodents. Plasmodium yoelius,yoelius, Plasmodium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine
D016753 Interleukin-10 A cytokine produced by a variety of cell types, including T-LYMPHOCYTES; MONOCYTES; DENDRITIC CELLS; and EPITHELIAL CELLS that exerts a variety of effects on immunoregulation and INFLAMMATION. Interleukin-10 combines with itself to form a homodimeric molecule that is the biologically active form of the protein. IL-10,CSIF-10,Cytokine Synthesis Inhibitory Factor,IL10,Interleukin 10
D050378 T-Lymphocytes, Regulatory CD4-positive T cells that inhibit immunopathology or autoimmune disease in vivo. They inhibit the immune response by influencing the activity of other cell types. Regulatory T-cells include naturally occurring CD4+CD25+ cells, IL-10 secreting Tr1 cells, and Th3 cells. Regulatory T Cell,Regulatory T-Cell,Regulatory T-Lymphocyte,Regulatory T-Lymphocytes,Suppressor T-Lymphocytes, Naturally-Occurring,T-Cells, Regulatory,Th3 Cells,Tr1 Cell,Treg Cell,Regulatory T-Cells,Suppressor T-Cells, Naturally-Occurring,Tr1 Cells,Treg Cells,Cell, Regulatory T,Cell, Th3,Cell, Tr1,Cell, Treg,Cells, Regulatory T,Cells, Th3,Cells, Tr1,Cells, Treg,Naturally-Occurring Suppressor T-Cell,Naturally-Occurring Suppressor T-Cells,Naturally-Occurring Suppressor T-Lymphocyte,Naturally-Occurring Suppressor T-Lymphocytes,Regulatory T Cells,Regulatory T Lymphocyte,Regulatory T Lymphocytes,Suppressor T Cells, Naturally Occurring,Suppressor T Lymphocytes, Naturally Occurring,Suppressor T-Cell, Naturally-Occurring,Suppressor T-Lymphocyte, Naturally-Occurring,T Cell, Regulatory,T Cells, Regulatory,T Lymphocytes, Regulatory,T-Cell, Naturally-Occurring Suppressor,T-Cells, Naturally-Occurring Suppressor,T-Lymphocyte, Regulatory,Th3 Cell
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051792 Basic Helix-Loop-Helix Transcription Factors A family of DNA-binding transcription factors that contain a basic HELIX-LOOP-HELIX MOTIF. Basic Helix-Loop-Helix Transcription Factor,bHLH Protein,bHLH Transcription Factor,bHLH Proteins,bHLH Transcription Factors,Basic Helix Loop Helix Transcription Factor,Basic Helix Loop Helix Transcription Factors,Factor, bHLH Transcription,Protein, bHLH,Transcription Factor, bHLH,Transcription Factors, bHLH
D018398 Homeodomain Proteins Proteins encoded by homeobox genes (GENES, HOMEOBOX) that exhibit structural similarity to certain prokaryotic and eukaryotic DNA-binding proteins. Homeodomain proteins are involved in the control of gene expression during morphogenesis and development (GENE EXPRESSION REGULATION, DEVELOPMENTAL). Homeo Domain Protein,Homeobox Protein,Homeobox Proteins,Homeodomain Protein,Homeoprotein,Homeoproteins,Homeotic Protein,Homeo Domain Proteins,Homeotic Proteins,Domain Protein, Homeo,Protein, Homeo Domain,Protein, Homeobox,Protein, Homeodomain,Protein, Homeotic,Proteins, Homeo Domain,Proteins, Homeobox,Proteins, Homeodomain,Proteins, Homeotic

Related Publications

Kara A O'Neal, and Sheldon L Zeltner, and Camille L Foscue, and Jason S Stumhofer
January 2017, Frontiers in immunology,
Kara A O'Neal, and Sheldon L Zeltner, and Camille L Foscue, and Jason S Stumhofer
June 2012, Journal of immunology (Baltimore, Md. : 1950),
Kara A O'Neal, and Sheldon L Zeltner, and Camille L Foscue, and Jason S Stumhofer
February 2020, Parasitology international,
Kara A O'Neal, and Sheldon L Zeltner, and Camille L Foscue, and Jason S Stumhofer
January 2018, Frontiers in immunology,
Kara A O'Neal, and Sheldon L Zeltner, and Camille L Foscue, and Jason S Stumhofer
October 2010, European journal of immunology,
Kara A O'Neal, and Sheldon L Zeltner, and Camille L Foscue, and Jason S Stumhofer
September 2009, Parasitology,
Kara A O'Neal, and Sheldon L Zeltner, and Camille L Foscue, and Jason S Stumhofer
December 2023, EMBO molecular medicine,
Kara A O'Neal, and Sheldon L Zeltner, and Camille L Foscue, and Jason S Stumhofer
October 2016, Journal of immunology (Baltimore, Md. : 1950),
Kara A O'Neal, and Sheldon L Zeltner, and Camille L Foscue, and Jason S Stumhofer
February 2012, Journal of immunology (Baltimore, Md. : 1950),
Kara A O'Neal, and Sheldon L Zeltner, and Camille L Foscue, and Jason S Stumhofer
January 2012, Bioscience, biotechnology, and biochemistry,
Copied contents to your clipboard!