Muscarinic modulation of calcium dependent plateau potentials in rat neostriatal neurons. 1986

U Misgeld, and P Calabresi, and H U Dodt

Intracellular recording from neostriatal neurons in rat brain slices revealed effects of the acetylcholine (ACh) agonist carbachol (Cch, 1-10 mumol/l), of the anticholinesterase physostigmine (10 mumol/l) and of the muscarinic antagonist atropine (10 mumol/l) on plateau potentials elicited in the presence of K-blockers. Plateau potentials elicited in the presence of K-blockers were Ca-dependent, since they persisted in Na-free solution, were resistant to tetrodotoxin (TTX, 3 mumol/l) and blocked by Cd (0.1-0.5 mmol/l). Cch reduced the duration of the plateau potentials and made them more susceptible to fatigue. These effects were antagonized by atropine (1-10 mumol/l), but not by Ba (100-200 mumol/l) or 4-aminopyridine (4-AP, 0.5 mmol/l). Physostigmine (10 mumol/l) had the same atropine-sensitive effects as Cch on the plateau potential. Atropine (10 mumol/l), by itself, prolonged the duration of the plateau potential. High concentrations (100 mumol/l) of Cch did not further reduce the duration of the plateau potential, instead, the duration re-increased with prolonged exposure. The re-increase of the plateau-spike duration was later masked by bursting activity. The opposing effects of low and high concentrations of Cch on the plateau potential duration corresponded to effects of this drug on intrastriatally evoked EPSPs in that low concentrations of Cch reduced the EPSP amplitude, but high concentrations re-increased it after a transient decrease. It is concluded that the muscarinic effect of ACh in the neostriatum is to modulate Ca-influx and that this effect is exerted in a tonic manner.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010277 Parasympathomimetics Drugs that mimic the effects of parasympathetic nervous system activity. Included here are drugs that directly stimulate muscarinic receptors and drugs that potentiate cholinergic activity, usually by slowing the breakdown of acetylcholine (CHOLINESTERASE INHIBITORS). Drugs that stimulate both sympathetic and parasympathetic postganglionic neurons (GANGLIONIC STIMULANTS) are not included here. Parasympathomimetic Agents,Parasympathomimetic Drugs,Parasympathomimetic Effect,Parasympathomimetic Effects,Agents, Parasympathomimetic,Drugs, Parasympathomimetic,Effect, Parasympathomimetic,Effects, Parasympathomimetic
D010830 Physostigmine A cholinesterase inhibitor that is rapidly absorbed through membranes. It can be applied topically to the conjunctiva. It also can cross the blood-brain barrier and is used when central nervous system effects are desired, as in the treatment of severe anticholinergic toxicity. Eserine
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001285 Atropine An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine. AtroPen,Atropin Augenöl,Atropine Sulfate,Atropine Sulfate Anhydrous,Atropinol,Anhydrous, Atropine Sulfate,Augenöl, Atropin,Sulfate Anhydrous, Atropine,Sulfate, Atropine

Related Publications

U Misgeld, and P Calabresi, and H U Dodt
March 1990, Nature,
U Misgeld, and P Calabresi, and H U Dodt
October 1996, Journal of neurophysiology,
U Misgeld, and P Calabresi, and H U Dodt
August 1989, The Journal of pharmacology and experimental therapeutics,
U Misgeld, and P Calabresi, and H U Dodt
November 1999, Journal of neurophysiology,
U Misgeld, and P Calabresi, and H U Dodt
June 1979, Science (New York, N.Y.),
U Misgeld, and P Calabresi, and H U Dodt
September 1997, Journal of neurophysiology,
U Misgeld, and P Calabresi, and H U Dodt
January 1985, Experimental brain research,
Copied contents to your clipboard!