Cationic porphyrins as probes of DNA structure. 1986

S D Bromley, and B W Ward, and J C Dabrowiak

The DNA binding specificity of a group of cationic manganese porphyrin complexes has been examined using DNase I footprinting methodology and by observing the sites of porphyrin-induced DNA strand scission in the presence of potassium superoxide. The compounds, which possess systematic changes in total charge, its distribution on the periphery on the macrocycle and ligand shape, bind in the minor groove of AT rich regions of DNA. While changes in total charge and charge arrangement do not significantly influence specificity, a shape change which blocks close ligand contact with the minor groove relaxes the original AT specificity causing the compound to cleave at both AT and GC sites. The observed changes in binding sequence specificity were interpreted in terms of electrostatic and steric factors associated with both the compounds and DNA.

UI MeSH Term Description Entries
D011166 Porphyrins A group of compounds containing the porphin structure, four pyrrole rings connected by methine bridges in a cyclic configuration to which a variety of side chains are attached. The nature of the side chain is indicated by a prefix, as uroporphyrin, hematoporphyrin, etc. The porphyrins, in combination with iron, form the heme component in biologically significant compounds such as hemoglobin and myoglobin. Porphyrin
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical

Related Publications

S D Bromley, and B W Ward, and J C Dabrowiak
April 1993, Journal of photochemistry and photobiology. B, Biology,
S D Bromley, and B W Ward, and J C Dabrowiak
January 1994, Biochemistry,
S D Bromley, and B W Ward, and J C Dabrowiak
September 2005, Photodiagnosis and photodynamic therapy,
S D Bromley, and B W Ward, and J C Dabrowiak
June 2009, Chemistry & biodiversity,
S D Bromley, and B W Ward, and J C Dabrowiak
May 1983, Clinical chemistry,
S D Bromley, and B W Ward, and J C Dabrowiak
January 1992, Methods in enzymology,
S D Bromley, and B W Ward, and J C Dabrowiak
March 1992, Nucleic acids research,
S D Bromley, and B W Ward, and J C Dabrowiak
May 1994, Photochemistry and photobiology,
S D Bromley, and B W Ward, and J C Dabrowiak
January 1992, Methods in enzymology,
Copied contents to your clipboard!