CTCN: a novel credit card fraud detection method based on Conditional Tabular Generative Adversarial Networks and Temporal Convolutional Network. 2023

Xiaoyan Zhao, and Shaopeng Guan
School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai, China.

Credit card fraud can lead to significant financial losses for both individuals and financial institutions. In this article, we propose a novel method called CTCN, which uses Conditional Tabular Generative Adversarial Networks (CTGAN) and temporal convolutional network (TCN) for credit card fraud detection. Our approach includes an oversampling algorithm that uses CTGAN to balance the dataset, and Neighborhood Cleaning Rule (NCL) to filter out majority class samples that overlap with the minority class. We generate synthetic minority class samples that conform to the original data distribution, resulting in a balanced dataset. We then employ TCN to analyze transaction sequences and capture long-term dependencies between data, revealing potential relationships between transaction sequences, thus achieving accurate credit card fraud detection. Experiments on three public datasets demonstrate that our proposed method outperforms current machine learning and deep learning methods, as measured by recall, F1-Score, and AUC-ROC.

UI MeSH Term Description Entries

Related Publications

Xiaoyan Zhao, and Shaopeng Guan
January 2025, PeerJ. Computer science,
Xiaoyan Zhao, and Shaopeng Guan
November 2021, Sensors (Basel, Switzerland),
Xiaoyan Zhao, and Shaopeng Guan
January 2021, Computational and mathematical methods in medicine,
Xiaoyan Zhao, and Shaopeng Guan
January 2024, Mathematical biosciences and engineering : MBE,
Xiaoyan Zhao, and Shaopeng Guan
March 2018, Proceedings of SPIE--the International Society for Optical Engineering,
Copied contents to your clipboard!