Restriction enzyme cleavage sites surrounding the structural gene for the lipoprotein of the Escherichia coli outer membrane. 1979

K Nakamura, and E T Katz-Wurtzel, and R M Pirtle, and M Inouye

The purified messenger ribonucleic acid (mRNA) for the lipoprotein of the Escherichia coli outer membrane was hybridized with fragments obtained by digestion of E. coli chromosomal deoxyribonucleic acid (DNA) with eight different restriction enzymes. For each restriction enzyme digestion, one specific fragment separated by agarose gel electrophoresis was found to hybridize with the lipoprotein mRNA. From the analysis of restriction fragments generated by double digestions with various combinations of restriction enzymes, cleavage sites for the restriction enzymes near the locus of the lipoprotein structural gene (lpp) were mapped. No restriction fragments of DNA from the E. coli lpp-2 mutant hybridized with the lipoprotein mRNA, confirming that the mutant has a deletion mutation in the vicinity of the lpp gene.

UI MeSH Term Description Entries
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

K Nakamura, and E T Katz-Wurtzel, and R M Pirtle, and M Inouye
January 1978, Journal of bacteriology,
K Nakamura, and E T Katz-Wurtzel, and R M Pirtle, and M Inouye
January 1979, Biomembranes,
K Nakamura, and E T Katz-Wurtzel, and R M Pirtle, and M Inouye
April 1977, The Journal of biological chemistry,
K Nakamura, and E T Katz-Wurtzel, and R M Pirtle, and M Inouye
January 1980, The Journal of biological chemistry,
K Nakamura, and E T Katz-Wurtzel, and R M Pirtle, and M Inouye
October 1975, Biochimica et biophysica acta,
K Nakamura, and E T Katz-Wurtzel, and R M Pirtle, and M Inouye
February 1990, Nucleic acids research,
K Nakamura, and E T Katz-Wurtzel, and R M Pirtle, and M Inouye
January 1979, Molecular & general genetics : MGG,
K Nakamura, and E T Katz-Wurtzel, and R M Pirtle, and M Inouye
February 1975, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
K Nakamura, and E T Katz-Wurtzel, and R M Pirtle, and M Inouye
March 2020, The EMBO journal,
K Nakamura, and E T Katz-Wurtzel, and R M Pirtle, and M Inouye
May 1982, The Journal of biological chemistry,
Copied contents to your clipboard!