Epigenetic Activation of TUSC3 Sensitizes Glioblastoma to Temozolomide Independent of MGMT Promoter Methylation Status. 2023

Qiong Wu, and Anders E Berglund, and Robert J Macaulay, and Arnold B Etame
Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.

Temozolomide (TMZ) is an important first-line treatment for glioblastoma (GBM), but there are limitations to TMZ response in terms of durability and dependence on the promoter methylation status of the DNA repair gene O6-methylguanine DNA methyltransferase (MGMT). MGMT-promoter-hypermethylated (MGMT-M) GBMs are more sensitive to TMZ than MGMT-promoter-hypomethylated (MGMT-UM) GBMs. Moreover, TMZ resistance is inevitable even in TMZ-sensitive MGMT-M GBMs. Hence, epigenetic reprogramming strategies are desperately needed in order to enhance TMZ response in both MGMT-M and MGMT-UM GBMs. In this study, we present novel evidence that the epigenetic reactivation of Tumor Suppressor Candidate 3 (TUSC3) can reprogram sensitivity of GBM stem cells (GSCs) to TMZ irrespective of MGMT promoter methylation status. Interrogation of TCGA patient GBM datasets confirmed TUSC3 promoter regulation of TUSC3 expression and also revealed a strong positive correlation between TUSC3 expression and GBM patient survival. Using a combination of loss-of-function, gain-of-function and rescue studies, we demonstrate that TUSC3 reactivation is associated with enhanced TMZ response in both MGMT-M and MGMT-UM GSCs. Further, we provide novel evidence that the demethylating agent 5-Azacitidine (5-Aza) reactivates TUSC3 expression in MGMT-M GSCs, whereas the combination of 5-Aza and MGMT inhibitor Lomeguatrib is necessary for TUSC3 reactivation in MGMT-UM GSCs. Lastly, we propose a pharmacological epigenetic reactivation strategy involving TUSC3 that leads to significantly prolonged survival in MGMT-M and MGMT-UM orthotopic GSCs models. Collectively, our findings provide a framework and rationale to further explore TUSC3-mediated epigenetic reprogramming strategies that could enhance TMZ sensitivity and outcomes in GBM. Mechanistic and translational evidence gained from such studies could contribute towards optimal design of impactful trials for MGMT-UM GBMs that currently do not have good treatment options.

UI MeSH Term Description Entries
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D003606 Dacarbazine An antineoplastic agent. It has significant activity against melanomas. (from Martindale, The Extra Pharmacopoeia, 31st ed, p564) DTIC,5-(3,3-Dimethyl-1-triazeno)imidazole-4-carboxamide,Biocarbazine,DIC,DTIC-Dome,Decarbazine,Deticene,Dimethyl Imidazole Carboxamide,Dimethyl Triazeno Imidazole Carboxamide,ICDT,NSC-45388,Carboxamide, Dimethyl Imidazole,DTIC Dome,DTICDome,Imidazole Carboxamide, Dimethyl,NSC 45388,NSC45388
D005909 Glioblastoma A malignant form of astrocytoma histologically characterized by pleomorphism of cells, nuclear atypia, microhemorrhage, and necrosis. They may arise in any region of the central nervous system, with a predilection for the cerebral hemispheres, basal ganglia, and commissural pathways. Clinical presentation most frequently occurs in the fifth or sixth decade of life with focal neurologic signs or seizures. Astrocytoma, Grade IV,Giant Cell Glioblastoma,Glioblastoma Multiforme,Astrocytomas, Grade IV,Giant Cell Glioblastomas,Glioblastoma, Giant Cell,Glioblastomas,Glioblastomas, Giant Cell,Grade IV Astrocytoma,Grade IV Astrocytomas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077204 Temozolomide A dacarbazine derivative that is used as an alkylating antineoplastic agent for the treatment of MALIGNANT GLIOMA and MALIGNANT MELANOMA. 8-Carbamoyl-3-methylimidazo(5,1-d)-1,2,3,5-tetrazin-4(3H)-one,CCRG 81045,CCRG-81045,M&B 39831,M&B-39831,Methazolastone,NSC 362856,NSC-362856,TMZ-Bioshuttle,TMZA-HE,Temodal,Temodar,Temozolomide Hexyl Ester,CCRG81045,M&B39831,NSC362856,TMZ Bioshuttle
D015254 DNA Modification Methylases Enzymes that are part of the restriction-modification systems. They are responsible for producing a species-characteristic methylation pattern, on either adenine or cytosine residues, in a specific short base sequence in the host cell's own DNA. This methylated sequence will occur many times in the host-cell DNA and remain intact for the lifetime of the cell. Any DNA from another species which gains entry into a living cell and lacks the characteristic methylation pattern will be recognized by the restriction endonucleases of similar specificity and destroyed by cleavage. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. DNA Modification Methyltransferases,Modification Methylases,Methylases, DNA Modification,Methylases, Modification,Methyltransferases, DNA Modification,Modification Methylases, DNA,Modification Methyltransferases, DNA
D044127 Epigenesis, Genetic A genetic process by which the adult organism is realized via mechanisms that lead to the restriction in the possible fates of cells, eventually leading to their differentiated state. Mechanisms involved cause heritable changes to cells without changes to DNA sequence such as DNA METHYLATION; HISTONE modification; DNA REPLICATION TIMING; NUCLEOSOME positioning; and heterochromatization which result in selective gene expression or repression. Epigenetic Processes,Epigenetic Process,Epigenetics Processes,Genetic Epigenesis,Process, Epigenetic,Processes, Epigenetic,Processes, Epigenetics
D045643 DNA Repair Enzymes Enzymes that are involved in the reconstruction of a continuous two-stranded DNA molecule without mismatch from a molecule, which contained damaged regions. DNA Repair Enzyme,Enzyme, DNA Repair,Enzymes, DNA Repair,Repair Enzyme, DNA,Repair Enzymes, DNA
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D018906 Antineoplastic Agents, Alkylating A class of drugs that differs from other alkylating agents used clinically in that they are monofunctional and thus unable to cross-link cellular macromolecules. Among their common properties are a requirement for metabolic activation to intermediates with antitumor efficacy and the presence in their chemical structures of N-methyl groups, that after metabolism, can covalently modify cellular DNA. The precise mechanisms by which each of these drugs acts to kill tumor cells are not completely understood. (From AMA, Drug Evaluations Annual, 1994, p2026) Alkylating Agents, Antineoplastic,Alkylating Antineoplastic Agents,Alkylating Antineoplastic Drugs,Alkylating Antineoplastics,Alkylating Drugs, Antineoplastic,Antineoplastic Alkylating Agents,Antineoplastic Drugs, Alkylating,Antineoplastics, Alkylating,Antineoplastic Alkylating Drugs,Drugs, Antineoplastic Alkylating

Related Publications

Qiong Wu, and Anders E Berglund, and Robert J Macaulay, and Arnold B Etame
March 2009, Journal of neuro-oncology,
Qiong Wu, and Anders E Berglund, and Robert J Macaulay, and Arnold B Etame
January 2018, Neurology India,
Qiong Wu, and Anders E Berglund, and Robert J Macaulay, and Arnold B Etame
September 2013, OncoTargets and therapy,
Qiong Wu, and Anders E Berglund, and Robert J Macaulay, and Arnold B Etame
April 2007, Pediatric blood & cancer,
Qiong Wu, and Anders E Berglund, and Robert J Macaulay, and Arnold B Etame
February 2024, Proceedings of SPIE--the International Society for Optical Engineering,
Qiong Wu, and Anders E Berglund, and Robert J Macaulay, and Arnold B Etame
December 2012, Journal of translational medicine,
Qiong Wu, and Anders E Berglund, and Robert J Macaulay, and Arnold B Etame
September 2010, Neuro-oncology,
Qiong Wu, and Anders E Berglund, and Robert J Macaulay, and Arnold B Etame
February 2011, Brain tumor pathology,
Qiong Wu, and Anders E Berglund, and Robert J Macaulay, and Arnold B Etame
February 2019, Medicina (Kaunas, Lithuania),
Copied contents to your clipboard!