Hematologic Neoplasms Associated with Down Syndrome: Cellular and Molecular Heterogeneity of the Diseases. 2023

Edoardo Peroni, and Michele Gottardi, and Lucia D'Antona, and Maria Luigia Randi, and Antonio Rosato, and Giacomo Coltro
Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy.

The molecular basis of Down syndrome (DS) predisposition to leukemia is not fully understood but involves various factors such as chromosomal abnormalities, oncogenic mutations, epigenetic alterations, and changes in selection dynamics. Myeloid leukemia associated with DS (ML-DS) is preceded by a preleukemic phase called transient abnormal myelopoiesis driven by GATA1 gene mutations and progresses to ML-DS via additional mutations in cohesin genes, CTCF, RAS, or JAK/STAT pathway genes. DS-related ALL (ALL-DS) differs from non-DS ALL in terms of cytogenetic subgroups and genetic driver events, and the aberrant expression of CRLF2, JAK2 mutations, and RAS pathway-activating mutations are frequent in ALL-DS. Recent advancements in single-cell multi-omics technologies have provided unprecedented insights into the cellular and molecular heterogeneity of DS-associated hematologic neoplasms. Single-cell RNA sequencing and digital spatial profiling enable the identification of rare cell subpopulations, characterization of clonal evolution dynamics, and exploration of the tumor microenvironment's role. These approaches may help identify new druggable targets and tailor therapeutic interventions based on distinct molecular profiles, ultimately improving patient outcomes with the potential to guide personalized medicine approaches and the development of targeted therapies.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004314 Down Syndrome A chromosome disorder associated either with an extra CHROMOSOME 21 or an effective TRISOMY for chromosome 21. Clinical manifestations include HYPOTONIA, short stature, BRACHYCEPHALY, upslanting palpebral fissures, epicanthus, Brushfield spots on the iris, protruding tongue, small ears, short, broad hands, fifth finger clinodactyly, single transverse palmar crease, and moderate to severe INTELLECTUAL DISABILITY. Cardiac and gastrointestinal malformations, a marked increase in the incidence of LEUKEMIA, and the early onset of ALZHEIMER DISEASE are also associated with this condition. Pathologic features include the development of NEUROFIBRILLARY TANGLES in neurons and the deposition of AMYLOID BETA-PROTEIN, similar to the pathology of ALZHEIMER DISEASE. (Menkes, Textbook of Child Neurology, 5th ed, p213) Mongolism,Trisomy 21,47,XX,+21,47,XY,+21,Down Syndrome, Partial Trisomy 21,Down's Syndrome,Partial Trisomy 21 Down Syndrome,Trisomy 21, Meiotic Nondisjunction,Trisomy 21, Mitotic Nondisjunction,Trisomy G,Downs Syndrome,Syndrome, Down,Syndrome, Down's
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D050791 STAT Transcription Factors A family of transcription factors containing SH2 DOMAINS that are involved in CYTOKINE-mediated SIGNAL TRANSDUCTION. STAT transcription factors are recruited to the cytoplasmic region of CELL SURFACE RECEPTORS and are activated via PHOSPHORYLATION. Once activated they dimerize and translocate into the CELL NUCLEUS where they influence GENE expression. They play a role in regulating CELL GROWTH PROCESSES and CELL DIFFERENTIATION. STAT transcription factors are inhibited by SUPPRESSOR OF CYTOKINE SIGNALING PROTEINS and PROTEIN INHIBITORS OF ACTIVATED STAT. STAT (Signal Transducers and Activators of Transcription) Proteins,Transcription Factors, STAT
D053612 Janus Kinases A family of intracellular tyrosine kinases that participate in the signaling cascade of cytokines by associating with specific CYTOKINE RECEPTORS. They act upon STAT TRANSCRIPTION FACTORS in signaling pathway referred to as the JAK/STAT pathway. The name Janus kinase refers to the fact the proteins have two phosphate-transferring domains. Janus Kinase,JAK Kinases,Kinase, Janus,Kinases, JAK,Kinases, Janus
D059016 Tumor Microenvironment The milieu surrounding neoplasms consisting of cells, vessels, soluble factors, and molecules, that can influence and be influenced by, the neoplasm's growth. Cancer Microenvironment,Cancer Microenvironments,Microenvironment, Cancer,Microenvironment, Tumor,Microenvironments, Cancer,Microenvironments, Tumor,Tumor Microenvironments
D019337 Hematologic Neoplasms Neoplasms located in the blood and blood-forming tissue (the bone marrow and lymphatic tissue). The commonest forms are the various types of LEUKEMIA, of LYMPHOMA, and of the progressive, life-threatening forms of the MYELODYSPLASTIC SYNDROMES. Blood Cancer,Hematologic Malignancies,Hematopoietic Neoplasms,Hematologic Malignancy,Hematological Malignancies,Hematological Neoplasms,Hematopoietic Malignancies,Malignancies, Hematologic,Malignancy, Hematologic,Neoplasms, Hematologic,Neoplasms, Hematopoietic,Blood Cancers,Cancer, Blood,Hematologic Neoplasm,Hematological Malignancy,Hematological Neoplasm,Hematopoietic Malignancy,Hematopoietic Neoplasm,Malignancy, Hematological,Malignancy, Hematopoietic,Neoplasm, Hematologic,Neoplasm, Hematological,Neoplasm, Hematopoietic

Related Publications

Edoardo Peroni, and Michele Gottardi, and Lucia D'Antona, and Maria Luigia Randi, and Antonio Rosato, and Giacomo Coltro
March 1990, The New England journal of medicine,
Edoardo Peroni, and Michele Gottardi, and Lucia D'Antona, and Maria Luigia Randi, and Antonio Rosato, and Giacomo Coltro
December 2022, Cancers,
Edoardo Peroni, and Michele Gottardi, and Lucia D'Antona, and Maria Luigia Randi, and Antonio Rosato, and Giacomo Coltro
January 2018, BioMed research international,
Edoardo Peroni, and Michele Gottardi, and Lucia D'Antona, and Maria Luigia Randi, and Antonio Rosato, and Giacomo Coltro
October 1987, Orvosi hetilap,
Edoardo Peroni, and Michele Gottardi, and Lucia D'Antona, and Maria Luigia Randi, and Antonio Rosato, and Giacomo Coltro
April 2012, American journal of perinatology,
Edoardo Peroni, and Michele Gottardi, and Lucia D'Antona, and Maria Luigia Randi, and Antonio Rosato, and Giacomo Coltro
August 2015, Zhonghua bing li xue za zhi = Chinese journal of pathology,
Edoardo Peroni, and Michele Gottardi, and Lucia D'Antona, and Maria Luigia Randi, and Antonio Rosato, and Giacomo Coltro
March 2004, International journal of environmental research and public health,
Edoardo Peroni, and Michele Gottardi, and Lucia D'Antona, and Maria Luigia Randi, and Antonio Rosato, and Giacomo Coltro
March 1986, Gan to kagaku ryoho. Cancer & chemotherapy,
Edoardo Peroni, and Michele Gottardi, and Lucia D'Antona, and Maria Luigia Randi, and Antonio Rosato, and Giacomo Coltro
September 1965, Die Medizinische Welt,
Edoardo Peroni, and Michele Gottardi, and Lucia D'Antona, and Maria Luigia Randi, and Antonio Rosato, and Giacomo Coltro
June 1993, American journal of medical genetics,
Copied contents to your clipboard!