Biochemical changes associated with the potentiation of acetaminophen hepatotoxicity by brief anesthesia with diethyl ether. 1986

E C To, and P G Wells

Acetaminophen hepatotoxicity in male CD-1 mice was enhanced markedly by brief anesthesia with diethyl ether (ether), and particularly so if acetaminophen was given several hours after ether. The present study was conducted to examine the possible biochemical mechanisms behind this delayed toxicologic synergism. In vitro biochemical studies indicated that ether anesthesia produced a delayed reduction in the activities of glucuronyl transferase and glutathione (GSH) S-transferase, and in the hepatic content of GSH. The hepatic content but not activity of the cytochromes P-450 was initially reduced by ether but recovered by the time of maximal toxicologic enhancement. In vivo studies showed that ether produced a small decrease in the plasma concentrations of glucuronide and sulfate conjugates of acetaminophen, with a concomitant, minor increase in the half-life of acetaminophen, and a major increase in the bioactivation of acetaminophen, as determined by an early, 2-fold increase in the plasma GSH and cysteine conjugates of acetaminophen, and a 3-fold increase in the covalent binding of acetaminophen to hepatocellular protein. Decreases produced by ether in the in vivo production of acetaminophen glucuronide correlated with increasing plasma concentrations of unmetabolised acetaminophen, decreasing hepatic GSH content and increasing covalent binding of acetaminophen to hepatocellular protein when these measurements were performed in the same animals. The biochemical mechanisms underlying the potentiation of acetaminophen hepatoxicity as measured by plasma glutamic pyruvic transaminase concentrations appeared to be due to delayed, complex effects of ether upon multiple enzymatic pathways of acetaminophen elimination and detoxification.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D004986 Ether A mobile, very volatile, highly flammable liquid used as an inhalation anesthetic and as a solvent for waxes, fats, oils, perfumes, alkaloids, and gums. It is mildly irritating to skin and mucous membranes. Diethyl Ether,Ether, Ethyl,Ethyl Ether,Ether, Diethyl
D005019 Ethyl Ethers Organic compounds having ethyl groups bound to an oxygen atom. Ethoxy Compounds,Compounds, Ethoxy,Ethers, Ethyl
D005965 Glucuronates Derivatives of GLUCURONIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the 6-carboxy glucose structure. Glucosiduronates,Glucuronic Acids,Acids, Glucuronic
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D000082 Acetaminophen Analgesic antipyretic derivative of acetanilide. It has weak anti-inflammatory properties and is used as a common analgesic, but may cause liver, blood cell, and kidney damage. Acetamidophenol,Hydroxyacetanilide,Paracetamol,APAP,Acamol,Acephen,Acetaco,Acetominophen,Algotropyl,Anacin-3,Datril,N-(4-Hydroxyphenyl)acetanilide,N-Acetyl-p-aminophenol,Panadol,Tylenol,p-Acetamidophenol,p-Hydroxyacetanilide,Anacin 3,Anacin3

Related Publications

E C To, and P G Wells
February 1986, Fundamental and applied toxicology : official journal of the Society of Toxicology,
E C To, and P G Wells
April 1993, The American journal of gastroenterology,
E C To, and P G Wells
July 1980, JAMA,
E C To, and P G Wells
April 1980, Annals of internal medicine,
E C To, and P G Wells
September 1966, Mayo Clinic proceedings,
E C To, and P G Wells
September 1984, Biochemical pharmacology,
E C To, and P G Wells
October 2005, Digestive diseases and sciences,
E C To, and P G Wells
September 1998, Biological & pharmaceutical bulletin,
E C To, and P G Wells
April 1997, Research communications in molecular pathology and pharmacology,
Copied contents to your clipboard!