Changes in H1 content, nucleosome repeat lengths and DNA elongation under conditions of hydroxyurea treatment that reportedly facilitate gene amplification. 1986

J A D'Anna, and V L Church, and R A Tobey

Depletion of histone H1, changes in nucleosome repeat lengths, and extents of DNA elongation were investigated in synchronized Chinese hamster (line CHO) cells using the general conditions of hydroxyurea treatment that appear to increase the frequency of gene amplification, i.e., synchronized cultures of G1 cells were allowed to begin to enter S phase before treatment with hydroxyurea was effected to retard DNA synthesis (Mariani, B.D. and Schimke, R.T. (1984) J. Biol. Chem. 259, 1901-1910). During the time that synchronized G1 cells begin to enter S phase, there occur considerable synchrony decay and accumulation of new DNA that increase with time before treatment with hydroxyurea is initiated. During exposure to hydroxyurea, there occur depletion of histone H1 and shortened repeat lengths for the DNA synthesized in the presence of hydroxyurea. In contrast, DNA synthesized in S phase before exposure to hydroxyurea has essentially the same repeat lengths as bulk chromatin at both the time that hydroxyurea treatment is effected and after 6 h in its presence. Sedimentation measurements indicate that the early replicating DNA undergoes considerable elongation both before and during 6 h of exposure to 0.3 mM hydroxyurea. Thus, nearly all of the early replicating DNA is elongated to greater than average replicon size under those conditions of hydroxyurea treatment that appear to favor gene amplification. Because the extents of DNA synthesis and cell cycle progression vary as functions of drug concentration, treatment times, and unknown factors (from experiment to experiment), it would appear that the parameters must be carefully monitored in each experiment if biochemical results are to be related to the position of cells in the growth cycle.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D005260 Female Females
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene

Related Publications

J A D'Anna, and V L Church, and R A Tobey
February 1980, Nucleic acids research,
J A D'Anna, and V L Church, and R A Tobey
October 1984, European journal of biochemistry,
J A D'Anna, and V L Church, and R A Tobey
October 1984, FEBS letters,
J A D'Anna, and V L Church, and R A Tobey
May 1993, Proceedings of the National Academy of Sciences of the United States of America,
J A D'Anna, and V L Church, and R A Tobey
May 1998, Molecular and cellular biology,
Copied contents to your clipboard!