Daunorubicin-induced DNA lesions in isolated rat hepatocytes and mammary epithelial cells. 1986

S K Howell, and C W Haidle, and Y M Wang

Daunorubicin, an anticancer drug, induces primarily mammary adenocarcinoma in Sprague-Dawley rats. We investigated daunorubicin-induced DNA lesions in enzymatically isolated mammary epithelial cells and hepatocytes from 7-8-week-old female Sprague-Dawley rats. Differences were observed in the type and quantity of DNA lesions in mammary epithelial cells and hepatocytes as determined by alkaline elution analysis. DNA single-strand breaks and proteinase-K-sensitive cross-linking lesions were observed in mammary epithelial cells. Hepatocytes appeared to have significantly lower relative frequencies of single-strand breaks than mammary epithelial cells when treated with daunorubicin (1.5-10.0 micrograms/10(6) cells). Hepatocytes displayed two types of cross-link. One form was sensitive to proteinase-K digestion, whereas the other form was insensitive. The metabolism of daunorubicin to the aglycone metabolites was substantially lower in mammary cells than in hepatocytes. However, the total uptake of the drug was similar in these two cell types. A metabolite, 7-deoxydaunorubicinol aglycone, was unable to induce single-strand breaks or cross-linking lesions in mammary epithelial cells. Both cell types exhibited a similar ability to repair radiation-induced single-strand breaks of DNA. However, the mammary cells may be less able to repair daunorubicin-mediated DNA damage. These results revealed that mammary epithelial cells are less able to metabolize the active mutagen/carcinogen, daunorubicin, than are hepatocytes. This, coupled with the observations of greater apparent DNA damage in mammary cells, may be of primary importance in the drug-induced carcinogenicity in the rat mammary tissue.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008321 Mammary Glands, Animal MAMMARY GLANDS in the non-human MAMMALS. Mammae,Udder,Animal Mammary Glands,Animal Mammary Gland,Mammary Gland, Animal,Udders
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003630 Daunorubicin A very toxic anthracycline aminoglycoside antineoplastic isolated from Streptomyces peucetius and others, used in treatment of LEUKEMIA and other NEOPLASMS. Daunomycin,Rubidomycin,Rubomycin,Cerubidine,Dauno-Rubidomycine,Daunoblastin,Daunoblastine,Daunorubicin Hydrochloride,NSC-82151,Dauno Rubidomycine,Hydrochloride, Daunorubicin,NSC 82151,NSC82151
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S K Howell, and C W Haidle, and Y M Wang
November 1989, European journal of cancer & clinical oncology,
S K Howell, and C W Haidle, and Y M Wang
January 1997, Archives of toxicology,
S K Howell, and C W Haidle, and Y M Wang
January 1988, Journal of toxicology and environmental health,
S K Howell, and C W Haidle, and Y M Wang
June 1988, Carcinogenesis,
S K Howell, and C W Haidle, and Y M Wang
January 1991, Anticancer research,
S K Howell, and C W Haidle, and Y M Wang
September 1986, Toxicology,
S K Howell, and C W Haidle, and Y M Wang
October 1989, Cancer research,
S K Howell, and C W Haidle, and Y M Wang
January 2013, PloS one,
S K Howell, and C W Haidle, and Y M Wang
September 1991, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
Copied contents to your clipboard!