Transcranial direct current stimulation of the prefrontal cortex improves depression-like behaviors in rats with Parkinson's disease. 2024

Lei Zhang, and Yuan Guo, and Jian Liu, and Libo Li, and Yixuan Wang, and Xiang Wu, and Yihua Bai, and Jing Li, and Qiaojun Zhang, and Yanping Hui
Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China.

Depression associated with Parkinson's disease (PD) seriously affects patients, and there is a lack of effective treatments. Transcranial direct current stimulation (tDCS) is increasingly used as a new non-invasive neuromodulation technique in the treatment of neuropsychiatric diseases. However, there is a paucity of research on tDCS for PD-related depression. Our study used PD model rats established with unilateral destruction of the medial forebrain bundle (MFB) to observe the modulatory effects of tDCS acting on the mPFC on depression-like behaviors. We found that tDCS acting on the mPFC improved depression-like behaviors in PD model rats by increasing sucrose intake in sucrose preference test (n = 7-10 rats/group) and shortening immobility time in forced swimming test (n = 7-8 rats/group). Meanwhile, tDCS decreased the expression of c-Fos protein (n = 8-11 rats/group) and the excitation of glutamatergic neurons (n = 6-8 rats/group) in the PrL and LHb of PD model rats. Western blots showed that tDCS decreased the overexpression of serine 845 phosphorylation site of AMPA receptor GluR1 (p-GluR1-S845) in the PrL and LHb of PD model rats (n = 8-11 rats/group), and the overexpression of p-GluR1-S831 in the LHb (n = 8-11 rats/group). The results of this study show that tDCS acting on the mPFC helps to improve PD-related depression, which involves the modulation of excitability and AMPA receptor phosphorylation on the PrL and LHb neurons.

UI MeSH Term Description Entries
D010300 Parkinson Disease A progressive, degenerative neurologic disease characterized by a TREMOR that is maximal at rest, retropulsion (i.e. a tendency to fall backwards), rigidity, stooped posture, slowness of voluntary movements, and a masklike facial expression. Pathologic features include loss of melanin containing neurons in the substantia nigra and other pigmented nuclei of the brainstem. LEWY BODIES are present in the substantia nigra and locus coeruleus but may also be found in a related condition (LEWY BODY DISEASE, DIFFUSE) characterized by dementia in combination with varying degrees of parkinsonism. (Adams et al., Principles of Neurology, 6th ed, p1059, pp1067-75) Idiopathic Parkinson Disease,Lewy Body Parkinson Disease,Paralysis Agitans,Primary Parkinsonism,Idiopathic Parkinson's Disease,Lewy Body Parkinson's Disease,Parkinson Disease, Idiopathic,Parkinson's Disease,Parkinson's Disease, Idiopathic,Parkinson's Disease, Lewy Body,Parkinsonism, Primary
D003863 Depression Depressive states usually of moderate intensity in contrast with MAJOR DEPRESSIVE DISORDER present in neurotic and psychotic disorders. Depressive Symptoms,Emotional Depression,Depression, Emotional,Depressive Symptom,Symptom, Depressive
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013395 Sucrose A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener. Saccharose
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017397 Prefrontal Cortex The rostral part of the frontal lobe, bounded by the inferior precentral fissure in humans, which receives projection fibers from the MEDIODORSAL NUCLEUS OF THE THALAMUS. The prefrontal cortex receives afferent fibers from numerous structures of the DIENCEPHALON; MESENCEPHALON; and LIMBIC SYSTEM as well as cortical afferents of visual, auditory, and somatic origin. Anterior Prefrontal Cortex,Brodmann Area 10,Brodmann Area 11,Brodmann Area 12,Brodmann Area 47,Brodmann's Area 10,Brodmann's Area 11,Brodmann's Area 12,Brodmann's Area 47,Pars Orbitalis,Frontal Sulcus,Gyrus Frontalis Inferior,Gyrus Frontalis Superior,Gyrus Orbitalis,Gyrus Rectus,Inferior Frontal Gyrus,Lateral Orbitofrontal Cortex,Marginal Gyrus,Medial Frontal Gyrus,Olfactory Sulci,Orbital Area,Orbital Cortex,Orbital Gyri,Orbitofrontal Cortex,Orbitofrontal Gyri,Orbitofrontal Gyrus,Orbitofrontal Region,Rectal Gyrus,Rectus Gyrus,Straight Gyrus,Subcallosal Area,Superior Frontal Convolution,Superior Frontal Gyrus,Ventral Medial Prefrontal Cortex,Ventromedial Prefrontal Cortex,Anterior Prefrontal Cortices,Area 10, Brodmann,Area 10, Brodmann's,Area 11, Brodmann,Area 11, Brodmann's,Area 12, Brodmann,Area 12, Brodmann's,Area 47, Brodmann,Area 47, Brodmann's,Area, Orbital,Area, Subcallosal,Brodmanns Area 10,Brodmanns Area 11,Brodmanns Area 12,Brodmanns Area 47,Convolution, Superior Frontal,Convolutions, Superior Frontal,Cortex, Anterior Prefrontal,Cortex, Lateral Orbitofrontal,Cortex, Orbital,Cortex, Orbitofrontal,Cortex, Prefrontal,Cortex, Ventromedial Prefrontal,Cortices, Ventromedial Prefrontal,Frontal Convolution, Superior,Frontal Gyrus, Inferior,Frontal Gyrus, Medial,Frontal Gyrus, Superior,Frontalis Superior, Gyrus,Gyrus, Inferior Frontal,Gyrus, Marginal,Gyrus, Medial Frontal,Gyrus, Orbital,Gyrus, Orbitofrontal,Gyrus, Rectal,Gyrus, Rectus,Gyrus, Straight,Gyrus, Superior Frontal,Inferior, Gyrus Frontalis,Lateral Orbitofrontal Cortices,Olfactory Sulcus,Orbital Areas,Orbital Cortices,Orbital Gyrus,Orbitalis, Pars,Orbitofrontal Cortex, Lateral,Orbitofrontal Cortices,Orbitofrontal Cortices, Lateral,Orbitofrontal Regions,Prefrontal Cortex, Anterior,Prefrontal Cortex, Ventromedial,Prefrontal Cortices, Anterior,Region, Orbitofrontal,Subcallosal Areas,Sulcus, Frontal,Superior Frontal Convolutions,Superior, Gyrus Frontalis,Ventromedial Prefrontal Cortices
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018091 Receptors, AMPA A class of ionotropic glutamate receptors characterized by their affinity for the agonist AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid). AMPA Receptors,Quisqualate Receptors,AMPA Receptor,Quisqualate Receptor,Receptor, AMPA,Receptor, Quisqualate,Receptors, Quisqualate
D020734 Parkinsonian Disorders A group of disorders which feature impaired motor control characterized by bradykinesia, MUSCLE RIGIDITY; TREMOR; and postural instability. Parkinsonian diseases are generally divided into primary parkinsonism (see PARKINSON DISEASE), secondary parkinsonism (see PARKINSON DISEASE, SECONDARY) and inherited forms. These conditions are associated with dysfunction of dopaminergic or closely related motor integration neuronal pathways in the BASAL GANGLIA. Autosomal Recessive Juvenile Parkinsonism,Familial Juvenile Parkinsonism,Parkinsonian Syndrome,Parkinsonism,Parkinsonism, Experimental,Parkinsonism, Juvenile,Ramsay Hunt Paralysis Syndrome,Autosomal Dominant Juvenile Parkinson Disease,Autosomal Dominant Juvenile Parkinsonism,Autosomal Dominant Parkinsonism,Autosomal Recessive Juvenile Parkinson Disease,Autosomal Recessive Parkinsonism,Chromosome 6-Linked Autosomal Recessive Parkinsonism,Experimental Parkinson Disease,Experimental Parkinsonism,Experimental Parkinsonism, MPTP-Induced,Familial Parkinson Disease, Autosomal Recessive,Juvenile Parkinson Disease,Juvenile Parkinson Disease, Autosomal Dominant,Juvenile Parkinson Disease, Autosomal Recessive,Juvenile Parkinsonism, Autosomal Dominant,Juvenile Parkinsonism, Autosomal Recessive,MPTP-Induced Experimental Parkinsonism,Parkinson Disease 2,Parkinson Disease 2, Autosomal Recessive Juvenile,Parkinson Disease Autosomal Recessive, Early Onset,Parkinson Disease, Autosomal Dominant. Juvenile,Parkinson Disease, Experimental,Parkinson Disease, Familial, Autosomal Recessive,Parkinson Disease, Juvenile,Parkinson Disease, Juvenile, Autosomal Dominant,Parkinson Disease, Juvenile, Autosomal Recessive,Parkinsonian Diseases,Parkinsonian Syndromes,Parkinsonism, Early Onset, with Diurnal Fluctuation,Parkinsonism, Early-Onset, With Diurnal Fluctuation,Parkinsonism, Juvenile, Autosomal Dominant,Parkinsonism, Juvenile, Autosomal Recessive,Chromosome 6 Linked Autosomal Recessive Parkinsonism,Diseases, Experimental Parkinson,Dominant Parkinsonism, Autosomal,Experimental Parkinson Diseases,Experimental Parkinsonism, MPTP Induced,Experimental Parkinsonisms,Juvenile Parkinsonism,Juvenile Parkinsonism, Familial,Juvenile Parkinsonisms,MPTP Induced Experimental Parkinsonism,Parkinson Diseases, Experimental,Parkinsonism, Autosomal Dominant,Parkinsonism, Autosomal Recessive,Parkinsonism, Familial Juvenile,Parkinsonism, MPTP-Induced Experimental,Parkinsonisms, Experimental,Parkinsonisms, Juvenile,Recessive Parkinsonism, Autosomal

Related Publications

Lei Zhang, and Yuan Guo, and Jian Liu, and Libo Li, and Yixuan Wang, and Xiang Wu, and Yihua Bai, and Jing Li, and Qiaojun Zhang, and Yanping Hui
January 2017, Neuroscience letters,
Lei Zhang, and Yuan Guo, and Jian Liu, and Libo Li, and Yixuan Wang, and Xiang Wu, and Yihua Bai, and Jing Li, and Qiaojun Zhang, and Yanping Hui
April 2021, International journal of psychophysiology : official journal of the International Organization of Psychophysiology,
Lei Zhang, and Yuan Guo, and Jian Liu, and Libo Li, and Yixuan Wang, and Xiang Wu, and Yihua Bai, and Jing Li, and Qiaojun Zhang, and Yanping Hui
May 2023, Neurobiology of learning and memory,
Lei Zhang, and Yuan Guo, and Jian Liu, and Libo Li, and Yixuan Wang, and Xiang Wu, and Yihua Bai, and Jing Li, and Qiaojun Zhang, and Yanping Hui
February 2021, Gait & posture,
Lei Zhang, and Yuan Guo, and Jian Liu, and Libo Li, and Yixuan Wang, and Xiang Wu, and Yihua Bai, and Jing Li, and Qiaojun Zhang, and Yanping Hui
October 2014, Behavioural brain research,
Lei Zhang, and Yuan Guo, and Jian Liu, and Libo Li, and Yixuan Wang, and Xiang Wu, and Yihua Bai, and Jing Li, and Qiaojun Zhang, and Yanping Hui
January 2014, NeuroImage,
Lei Zhang, and Yuan Guo, and Jian Liu, and Libo Li, and Yixuan Wang, and Xiang Wu, and Yihua Bai, and Jing Li, and Qiaojun Zhang, and Yanping Hui
August 2023, Neuroreport,
Lei Zhang, and Yuan Guo, and Jian Liu, and Libo Li, and Yixuan Wang, and Xiang Wu, and Yihua Bai, and Jing Li, and Qiaojun Zhang, and Yanping Hui
January 2020, Brain stimulation,
Lei Zhang, and Yuan Guo, and Jian Liu, and Libo Li, and Yixuan Wang, and Xiang Wu, and Yihua Bai, and Jing Li, and Qiaojun Zhang, and Yanping Hui
January 2007, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
Lei Zhang, and Yuan Guo, and Jian Liu, and Libo Li, and Yixuan Wang, and Xiang Wu, and Yihua Bai, and Jing Li, and Qiaojun Zhang, and Yanping Hui
October 2006, Movement disorders : official journal of the Movement Disorder Society,
Copied contents to your clipboard!