Connections of the parahippocampal cortex in the cat. V. Intrinsic connections; comments on input/output connections with the hippocampus. 1986

M P Witter, and P Room, and H J Groenewegen, and A H Lohman

The present report is the last in a series of papers on the connectivity of the parahippocampal cortex in the cat, which in this species is considered to be composed of the entorhinal and perirhinal cortices. Injections of anterogradely transported tritiated amino acids and the retrograde tracers HRP, WGA-HRP, fast blue, or nuclear yellow were placed within the limits of the parahippocampal cortex. An analysis was made of the resulting pattern of anterograde labeling and of the distribution of retrogradely labeled neurons within the parahippocampal cortex. It appears that within the parahippocampal cortex of the cat a framework exists, which is composed of longitudinal and transverse connections, organized according to three principles: Medially directed projections originate mostly in superficial layers, whereas laterally directed fibers come from deep layers. The longitudinal connections span the entire rostrocaudal extent of the parahippocampal cortex, whereas the mediolateral extent of the transverse connections is in general more restricted. Based on the organization of these longitudinal and transverse connections four longitudinal zones are recognized. The lateral entorhinal cortex (LEA) projects both within the entorhinal cortex and to the perirhinal cortex, whereas the intrinsic projections of the medial entorhinal cortex (MEA) are confined to the entorhinal cortex. These results are discussed in conjunction with the main organizational features of the afferent and efferent connections of the parahippocampal cortex of the cat. The premise is made that the cytoarchitectonically defined subdivisions of the cortex can be grouped into four areas, each with its own set of fiber connections and subserving different functional roles. A lateral area, constituted by the perirhinal areas 35 and 36, and the caudally adjacent postsplenial cortex, serves as a peripheral area through which the rest of the parahippocampal cortex--i.e., LEA and MEA, and ultimately the hippocampal formation--reciprocally communicates with extensive neocortical, subcortical, and thalamic regions associated with higher-order behavior. The medial part of LEA, constituted by the ventrolateral (VLEA) and ventromedial (VMEA) divisions, has reciprocal connections with the hippocampal formation and with the cortex, partly via the perirhinal cortex, and is connected with a number of subcortical structures such as the amygdala and the striatum.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008032 Limbic System A set of forebrain structures common to all mammals that is defined functionally and anatomically. It is implicated in the higher integration of visceral, olfactory, and somatic information as well as homeostatic responses including fundamental survival behaviors (feeding, mating, emotion). For most authors, it includes the AMYGDALA; EPITHALAMUS; GYRUS CINGULI; hippocampal formation (see HIPPOCAMPUS); HYPOTHALAMUS; PARAHIPPOCAMPAL GYRUS; SEPTAL NUCLEI; anterior nuclear group of thalamus, and portions of the basal ganglia. (Parent, Carpenter's Human Neuroanatomy, 9th ed, p744; NeuroNames, http://rprcsgi.rprc.washington.edu/neuronames/index.html (September 2, 1998)). Limbic Systems,System, Limbic,Systems, Limbic
D008297 Male Males
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005260 Female Females
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M P Witter, and P Room, and H J Groenewegen, and A H Lohman
October 1986, The Journal of comparative neurology,
M P Witter, and P Room, and H J Groenewegen, and A H Lohman
September 1986, The Journal of comparative neurology,
M P Witter, and P Room, and H J Groenewegen, and A H Lohman
May 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M P Witter, and P Room, and H J Groenewegen, and A H Lohman
August 1997, The Journal of comparative neurology,
M P Witter, and P Room, and H J Groenewegen, and A H Lohman
October 1986, The Journal of comparative neurology,
M P Witter, and P Room, and H J Groenewegen, and A H Lohman
January 1986, Experimental brain research,
M P Witter, and P Room, and H J Groenewegen, and A H Lohman
May 1993, Neuroreport,
M P Witter, and P Room, and H J Groenewegen, and A H Lohman
September 1986, The Journal of comparative neurology,
M P Witter, and P Room, and H J Groenewegen, and A H Lohman
July 2001, Proceedings of the National Academy of Sciences of the United States of America,
M P Witter, and P Room, and H J Groenewegen, and A H Lohman
July 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!