Characterization of a Tetrahymena thermophila mutant strain unable to develop normal thermotolerance. 1986

K W Kraus, and E M Hallberg, and R Hallberg

For Tetrahymena thermophila cells to survive extended periods of time at 43 degrees C, they must continuously synthesize heat shock proteins. For its translational machinery to function at 43 degrees C, T. thermophila requires either prior nonlethal heat shock treatment or brief treatment with partially inhibiting doses of cycloheximide or emetine. We have identified and characterized a mutant strain of T. thermophila (MC-3) in which prior nonlethal heat shock does not prevent protein synthesis inactivation at 43 degrees C. In addition, treatment of MC-3 cells with either of the antibiotics that normally confer 43 degrees C thermoprotection on wild-type cells elicited no similar thermoprotective response in these cells. Despite these phenotypic characteristics, by other criteria MC-3 synthesized a normal, functional array of heat shock proteins at 40 degrees C, a nonlethal heat shock protein-inducing temperature. The mutation in MC-3 which prevents the thermostabilization of protein synthesis by nonlethal heat shock is, by genetic criteria, most likely the same one which prevents the induction of thermotolerance by drug treatments. We present evidence that this mutation may affect some ribosome-associated functions.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011132 Polyribosomes A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Polysomes,Polyribosome,Polysome
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D000064 Acclimatization Adaptation to a new environment or to a change in the old. Acclimation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013768 Tetrahymena A genus of ciliate protozoa commonly used in genetic, cytological, and other research. Tetrahymenas
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

K W Kraus, and E M Hallberg, and R Hallberg
January 1992, Developmental genetics,
K W Kraus, and E M Hallberg, and R Hallberg
October 1985, Journal of cell science,
K W Kraus, and E M Hallberg, and R Hallberg
April 1982, Molecular and cellular biology,
K W Kraus, and E M Hallberg, and R Hallberg
February 1983, Experimental cell research,
K W Kraus, and E M Hallberg, and R Hallberg
April 1983, Molecular and cellular biology,
K W Kraus, and E M Hallberg, and R Hallberg
August 1980, The Journal of protozoology,
K W Kraus, and E M Hallberg, and R Hallberg
August 1987, Journal of cell science,
K W Kraus, and E M Hallberg, and R Hallberg
January 1990, The Journal of protozoology,
K W Kraus, and E M Hallberg, and R Hallberg
August 1982, Molecular and cellular biology,
Copied contents to your clipboard!