Hepatotoxicity of butylated hydroxytoluene and its analogs in mice depleted of hepatic glutathione. 1987

T Mizutani, and H Nomura, and K Nakanishi, and S Fujita

Butylated hydroxytoluene (2,6-di-tert-butyl-4-methylphenol, BHT) has been reported to be a lung toxicant. Mice treated with BHT (200-800 mg/kg, po) in combination with an inhibitor of glutathione (GSH) synthesis, buthionine sulfoximine (BOS; 1 hr before and 2 hr after BHT, 4 mmol/kg per dose, ip) developed hepatotoxicity characterized by an increase in serum glutamic pyruvic transaminase (GPT) activity and centrilobular necrosis of hepatocytes. The hepatotoxic response was both time- and dose-dependent. BHT (up to 800 mg/kg) alone produced no evidence of liver injury. As judged by the observation of normal serum GPT, drug metabolism inhibitors such as SKF-525A, piperonyl butoxide, and carbon disulfide prevented the hepatotoxic effect of BHT given in combination with BSO. On the other hand, pretreatment with cedar wood oil resulted in increased hepatic injury in mice treated with both BHT and BSO. Pretreatment with phenobarbital also tended to increase hepatic injury as judged by changes in serum GPT. These results suggest that BHT is activated by a cytochrome-P-450-dependent metabolic reaction and that the hepatotoxic effect is caused by inadequate rates of detoxification of the reactive metabolite in mice depleted of hepatic GSH by BSO administration. The hepatotoxic potencies of BHT-related compounds also were examined in BSO-treated animals. For hepatotoxicity, the phenolic ring must have benzylic hydrogen atoms at the 4 position and an ortho-alkyl group(s) that moderately hinders the hydroxyl group. These structural requirements essentially are the same as those for the toxic potency in the lung (T. Mizutani, I. Ishida, K. Yamamoto, and K. Tajima (1982), 62, 273-281) and support the hypothesis that BHT-quinone methide plays a role in producing liver damage in mice with depressed hepatic GSH levels.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008717 Methionine Sulfoximine Sulfoximine, Methionine
D002084 Butylated Hydroxytoluene A di-tert-butyl PHENOL with antioxidant properties. Butylhydroxytoluene,2,6-Bis(1,1-dimethylethyl)-4-methylphenol,2,6-Di-t-butyl-4-methylphenol,2,6-Di-tert-butyl-4-methylphenol,2,6-Di-tert-butyl-p-cresol,4-Methyl-2,6-ditertbutylphenol,BHT,Di-tert-butyl-methylphenol,Dibunol,Ionol,Ionol (BHT),2,6 Di t butyl 4 methylphenol,2,6 Di tert butyl 4 methylphenol,2,6 Di tert butyl p cresol,4 Methyl 2,6 ditertbutylphenol,Di tert butyl methylphenol,Hydroxytoluene, Butylated
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D000410 Alanine Transaminase An enzyme that catalyzes the conversion of L-alanine and 2-oxoglutarate to pyruvate and L-glutamate. (From Enzyme Nomenclature, 1992) EC 2.6.1.2. Alanine Aminotransferase,Glutamic-Pyruvic Transaminase,SGPT,Alanine-2-Oxoglutarate Aminotransferase,Glutamic-Alanine Transaminase,Alanine 2 Oxoglutarate Aminotransferase,Aminotransferase, Alanine,Aminotransferase, Alanine-2-Oxoglutarate,Glutamic Alanine Transaminase,Glutamic Pyruvic Transaminase,Transaminase, Alanine,Transaminase, Glutamic-Alanine,Transaminase, Glutamic-Pyruvic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

T Mizutani, and H Nomura, and K Nakanishi, and S Fujita
October 1985, Research communications in chemical pathology and pharmacology,
T Mizutani, and H Nomura, and K Nakanishi, and S Fujita
December 1986, Toxicology letters,
T Mizutani, and H Nomura, and K Nakanishi, and S Fujita
August 1987, Toxicology and applied pharmacology,
T Mizutani, and H Nomura, and K Nakanishi, and S Fujita
December 1994, Research communications in molecular pathology and pharmacology,
T Mizutani, and H Nomura, and K Nakanishi, and S Fujita
August 1980, Toxicology letters,
T Mizutani, and H Nomura, and K Nakanishi, and S Fujita
July 2009, Archives of toxicology,
T Mizutani, and H Nomura, and K Nakanishi, and S Fujita
May 2013, Human & experimental toxicology,
T Mizutani, and H Nomura, and K Nakanishi, and S Fujita
January 1994, Food additives and contaminants,
T Mizutani, and H Nomura, and K Nakanishi, and S Fujita
January 1999, Journal of applied toxicology : JAT,
T Mizutani, and H Nomura, and K Nakanishi, and S Fujita
January 1987, Drug metabolism and disposition: the biological fate of chemicals,
Copied contents to your clipboard!