Theoretical analysis of oxygen supply to contracted skeletal muscle. 1986

K Groebe, and G Thews

Honig and collaborators reported striking contradictions in current understanding of O2 supply to working skeletal muscle. Therefore we re-examined the problem by means of a new composite computer simulation. As inclusion of erythrocytic O2 desaturation and oxygen transport and consumption inside the muscle cell into a single model would entail immense numerical difficulties, we broke up the whole process into its several components: O2 desaturation of erythrocytes O2 transport and consumption in muscle fiber capillary transit time characterizing the period of contact between red cell and muscle fiber. "Erythrocyte model" as well as "muscle fiber model" both consist of a central core cylinder surrounded by a concentric diffusion layer representing the extracellular resistance to O2 diffusion (Fig. 1). Resistance layers in both models are to be conceived of as one and the same anatomical structure--even though in each model their shape is adapted to the respective geometry. By means of this overlap region a spatial connexion between both is given, whereas temporal coherence governing O2 fluxes and red cell spacing is derived from capillary transit time. Analysis of individual components is outlined as follows: Assuming axial symmetry of the problem a numerical algorithm was employed to solve the parabolic system of partial differential equations describing red cell O2 desaturation. Hb-O2 reaction kinetics, free and facilitated O2 diffusion in axial and radial directions, and red cell movement in capillary were considered. Resulting time courses of desaturation, which are considerably faster than the ones computed by Honig et al., are given in the following table (see also Fig. 3). (Formula: see text) Furthermore, we studied the respective importance of the several processes included in our model: Omission of longitudinal diffusion increased desaturation time by 15% to 23%, whereas effects of reaction kinetics and axial movement were 5% and 2% respectively. For time courses see Fig. 2. Nature and magnitude of extra-erythrocytic resistance to O2 diffusion playing a prominent part in O2 desaturation are scarcely explored. Calculated desaturation times based upon our new estimates (line 3 of above table) correspond well, however, with findings by Sinha, who observed 1.75 to 4-fold prolongation in omental and mesenteric capillaries compared to desaturation through equivalent plasma layers. The 3-dimensional elliptic system of partial differential equations describing stationary O2 transport through resistance layer and subsequent free and facilitated O2 diffusion and O2 consumption in muscle fiber was solved analytically.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010108 Oxyhemoglobins A compound formed by the combination of hemoglobin and oxygen. It is a complex in which the oxygen is bound directly to the iron without causing a change from the ferrous to the ferric state. Oxycobalt Hemoglobin,Oxycobalthemoglobin,Oxyhemoglobin,Hemoglobin, Oxycobalt
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

K Groebe, and G Thews
February 1984, The American review of respiratory disease,
K Groebe, and G Thews
April 2016, The Journal of physiology,
K Groebe, and G Thews
June 2010, American journal of physiology. Heart and circulatory physiology,
K Groebe, and G Thews
December 1975, The Journal of biological chemistry,
K Groebe, and G Thews
January 1984, Advances in experimental medicine and biology,
K Groebe, and G Thews
June 1987, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
K Groebe, and G Thews
April 2001, Metabolism: clinical and experimental,
K Groebe, and G Thews
December 1986, Federation proceedings,
K Groebe, and G Thews
January 1985, European surgical research. Europaische chirurgische Forschung. Recherches chirurgicales europeennes,
Copied contents to your clipboard!