Incorporation of haemoglobin haem into the rat hepatic haemoproteins tryptophan pyrrolase and cytochrome P-450. 1986

J F Wyman, and J L Gollan, and W Settle, and G C Farrell, and M A Correia

After its administration to intact rats, haemoglobin haem was incorporated into hepatic tryptophan pyrrolase as shown by the marked increase in functional constitution of this enzyme. Incorporation of haemoglobin haem into cytochrome P-450 was demonstrated in intact rats and in the isolated rat liver perfused with haemoglobin-free medium. In both systems, haemoglobin haem restored cytochrome P-450 content and its dependent mixed-function-oxidase activity after substrate-induced destruction of the cytochrome P-450 haem moiety. Further confirmation that haemoglobin haem could be incorporated prosthetically into cytochrome P-450 was achieved by administration of [3H]haemoglobin to rats and subsequent isolation and characterization of radiolabelled substrate-alkylated products of cytochrome P-450 haem. Our findings indicate that, although hepatic uptake of parenteral haemoglobin is slower than that of haem, it appears to serve as an effective haem donor to the intrahepatic 'free' haem pool. Thus parenteral haemoglobin may warrant consideration as a therapeutic alternative to haem in the acute hepatic porphyrias.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008706 Methemoglobin Ferrihemoglobin
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011166 Porphyrins A group of compounds containing the porphin structure, four pyrrole rings connected by methine bridges in a cyclic configuration to which a variety of side chains are attached. The nature of the side chain is indicated by a prefix, as uroporphyrin, hematoporphyrin, etc. The porphyrins, in combination with iron, form the heme component in biologically significant compounds such as hemoglobin and myoglobin. Porphyrin
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D000502 Allylisopropylacetamide An allylic compound that acts as a suicide inactivator of CYTOCHROME P450 by covalently binding to its heme moiety or surrounding protein. 2-Isopropyl-4-Pentenamide,2 Isopropyl 4 Pentenamide

Related Publications

J F Wyman, and J L Gollan, and W Settle, and G C Farrell, and M A Correia
January 1979, The Journal of biological chemistry,
J F Wyman, and J L Gollan, and W Settle, and G C Farrell, and M A Correia
April 1986, Archives of biochemistry and biophysics,
J F Wyman, and J L Gollan, and W Settle, and G C Farrell, and M A Correia
December 1969, The Biochemical journal,
J F Wyman, and J L Gollan, and W Settle, and G C Farrell, and M A Correia
June 1989, Clinical and experimental pharmacology & physiology,
J F Wyman, and J L Gollan, and W Settle, and G C Farrell, and M A Correia
January 1981, Essays in biochemistry,
J F Wyman, and J L Gollan, and W Settle, and G C Farrell, and M A Correia
January 1986, Postepy biochemii,
J F Wyman, and J L Gollan, and W Settle, and G C Farrell, and M A Correia
May 1985, Xenobiotica; the fate of foreign compounds in biological systems,
J F Wyman, and J L Gollan, and W Settle, and G C Farrell, and M A Correia
December 1970, Journal of biochemistry,
J F Wyman, and J L Gollan, and W Settle, and G C Farrell, and M A Correia
September 1978, The Biochemical journal,
Copied contents to your clipboard!