Gut microbiota depletion minimally affects the daily voluntary wheel running activity and food anticipatory activity in female and male C57BL/6J mice. 2023

David E Ehichioya, and S K Tahajjul Taufique, and Isabel Magaña, and Sofia Farah, and Yuuki Obata, and Shin Yamazaki
Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, United States.

Emerging evidence has highlighted that the gut microbiota plays a critical role in the regulation of various aspects of mammalian physiology and behavior, including circadian rhythms. Circadian rhythms are fundamental behavioral and physiological processes that are governed by circadian pacemakers in the brain. Since mice are nocturnal, voluntary wheel running activity mostly occurs at night. This nocturnal wheel-running activity is driven by the primary circadian pacemaker located in the suprachiasmatic nucleus (SCN). Food anticipatory activity (FAA) is the increased bout of locomotor activity that precedes the scheduled short duration of a daily meal. FAA is controlled by the food-entrainable oscillator (FEO) located outside of the SCN. Several studies have shown that germ-free mice and mice with gut microbiota depletion altered those circadian behavioral rhythms. Therefore, this study was designed to test if the gut microbiota is involved in voluntary wheel running activity and FAA expression. To deplete gut microbiota, C57BL/6J wildtype mice were administered an antibiotic cocktail via their drinking water throughout the experiment. The effect of antibiotic cocktail treatment on wheel running activity rhythm in both female and male mice was not detectable with the sample size in our current study. Then mice were exposed to timed restricted feeding during the day. Both female and male mice treated with antibiotics exhibited normal FAA which was comparable with the FAA observed in the control group. Those results suggest that gut microbiota depletion has minimum effect on both circadian behavioral rhythms controlled by the SCN and FEO respectively. Our result contradicts recently published studies that reported significantly higher FAA levels in germ-free mice compared to their control counterparts and gut microbiota depletion significantly reduced voluntary activity by 50%.

UI MeSH Term Description Entries

Related Publications

David E Ehichioya, and S K Tahajjul Taufique, and Isabel Magaña, and Sofia Farah, and Yuuki Obata, and Shin Yamazaki
July 1991, Pharmacology, biochemistry, and behavior,
David E Ehichioya, and S K Tahajjul Taufique, and Isabel Magaña, and Sofia Farah, and Yuuki Obata, and Shin Yamazaki
May 2010, Calcified tissue international,
David E Ehichioya, and S K Tahajjul Taufique, and Isabel Magaña, and Sofia Farah, and Yuuki Obata, and Shin Yamazaki
February 2023, International journal of molecular sciences,
David E Ehichioya, and S K Tahajjul Taufique, and Isabel Magaña, and Sofia Farah, and Yuuki Obata, and Shin Yamazaki
April 2017, Journal of neuroimmunology,
David E Ehichioya, and S K Tahajjul Taufique, and Isabel Magaña, and Sofia Farah, and Yuuki Obata, and Shin Yamazaki
August 2022, Nutricion hospitalaria,
David E Ehichioya, and S K Tahajjul Taufique, and Isabel Magaña, and Sofia Farah, and Yuuki Obata, and Shin Yamazaki
September 2016, Behavioural brain research,
David E Ehichioya, and S K Tahajjul Taufique, and Isabel Magaña, and Sofia Farah, and Yuuki Obata, and Shin Yamazaki
December 2010, Behavioural brain research,
David E Ehichioya, and S K Tahajjul Taufique, and Isabel Magaña, and Sofia Farah, and Yuuki Obata, and Shin Yamazaki
May 1998, Physiology & behavior,
David E Ehichioya, and S K Tahajjul Taufique, and Isabel Magaña, and Sofia Farah, and Yuuki Obata, and Shin Yamazaki
June 2019, Behavioural brain research,
David E Ehichioya, and S K Tahajjul Taufique, and Isabel Magaña, and Sofia Farah, and Yuuki Obata, and Shin Yamazaki
January 2016, Frontiers in behavioral neuroscience,
Copied contents to your clipboard!