Increased efficacy of antidromic and orthodromic activation of cat alpha motoneurons upon arrival of coerulospinal volleys. 1986

S J Fung, and C D Barnes

The present study demonstrates the enhanced efficacy of impulse initiation among the hindlimb alpha motoneurons of flexor and extensor origins (n = 35) upon electrical stimulation of the locus coeruleus (LC) in decerebrate cats. When combined with the LC-evoked excitatory postsynaptic potential (EPSP), intracellular hyperpolarization-induced partial and total blocks of antidromic invasion were overcome, resulting in full-spike generation in all cells (n = 21). In three other cells, partial blocks, representing the motoneuron refractoriness resulting from double stimulation at close intervals, were relieved by the concomitant LC-EPSP. When an antidromic volley occurred at a time when the somadendritic (SD) membrane was near threshold, LC stimulation was shown to increase the probability of full-spike initiation as well as to shorten the initial segment (IS)-SD delay, suggesting a coerulospinal enhancement of the safety factor for IS-SD impulse conduction. When coincident with the LC-EPSPs, group Ia EPSPs of flexor and extensor origins were demonstrated to reach the threshold of discharging the cells (n = 4). In those cells exhibiting prominent depolarizing synaptic noise (n = 10), LC stimulation was sufficient to cause the cell to fire action potentials presumably by interacting with concomitant excitatory synaptic drive. The present results advocate that the descending LC excitatory drive has engaged in the action potential initiation process of the alpha motoneuron, facilitating its reaching the firing threshold during concurrent depressed membrane excitability as well as subthreshold converging inputs.

UI MeSH Term Description Entries
D008125 Locus Coeruleus Bluish-colored region in the superior angle of the FOURTH VENTRICLE floor, corresponding to melanin-like pigmented nerve cells which lie lateral to the PERIAQUEDUCTAL GRAY. Locus Caeruleus Complex,Locus Caeruleus,Locus Ceruleus,Locus Ceruleus Complex,Locus Coeruleus Complex,Nucleus Pigmentosus Pontis,Caeruleus Complex, Locus,Complex, Locus Caeruleus,Complex, Locus Ceruleus,Complex, Locus Coeruleus,Pontis, Nucleus Pigmentosus
D008297 Male Males
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

S J Fung, and C D Barnes
November 1949, Journal of neurophysiology,
S J Fung, and C D Barnes
January 1972, Journal of neurophysiology,
S J Fung, and C D Barnes
March 1969, Journal of neurophysiology,
S J Fung, and C D Barnes
January 1959, Quarterly journal of experimental physiology and cognate medical sciences,
S J Fung, and C D Barnes
April 1974, Experimental neurology,
Copied contents to your clipboard!