Nonequilibrium voltage fluctuations in biological membranes. II. Voltage and current noise generated by ion carriers, channels and electrogenic pumps. 1986

P Solleder, and E Frehland

As applications of the general theoretical framework of charge transport in biological membranes and related voltage and current noise, a number of model calculations are presented for ion carriers, rigid channels, channels with conformational substates and electrogenic pumps. The results are discussed with special reference to the problem of threshold values for sensory transduction processes and their limitations by voltage fluctuations. Furthermore, starting from the special results of model calculations, an attempt is made to determine more general aspects of electric fluctuations generated by charge-transport processes in biological membranes: different frequency dependences of voltage and current noise, and dependence of noise intensities with increasing distance from the equilibrium state.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D014634 Valinomycin A cyclododecadepsipeptide ionophore antibiotic produced by Streptomyces fulvissimus and related to the enniatins. It is composed of 3 moles each of L-valine, D-alpha-hydroxyisovaleric acid, D-valine, and L-lactic acid linked alternately to form a 36-membered ring. (From Merck Index, 11th ed) Valinomycin is a potassium selective ionophore and is commonly used as a tool in biochemical studies.

Related Publications

P Solleder, and E Frehland
January 1984, European biophysics journal : EBJ,
P Solleder, and E Frehland
January 1979, Biofizika,
P Solleder, and E Frehland
February 1978, Biochimica et biophysica acta,
P Solleder, and E Frehland
September 2009, Langmuir : the ACS journal of surfaces and colloids,
P Solleder, and E Frehland
October 2000, The Journal of membrane biology,
P Solleder, and E Frehland
March 2017, Physical review. E,
P Solleder, and E Frehland
September 1985, Biophysical journal,
P Solleder, and E Frehland
October 2003, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!