Inhibition of cardiopulmonary input to thoracic spinothalamic tract cells by stimulation of the subcoeruleus-parabrachial region in the primate. 1987

T J Brennan, and U T Oh, and M N Girardot, and W S Ammons, and R D Foreman

Effects of electrically stimulating the subcoeruleus-parabrachial (SC-PB) region on 31 spinothalamic tract neurons which receive excitatory input from cardiopulmonary sympathetic afferent fibers were studied in 21 monkeys anesthetized with chloralose. A conditioning stimulus to the SC-PB region inhibited the activity of 5 cells responding to the test stimulus applied to sympathetic afferent fibers. At a conditioning-test interval of 10 ms, test responses were maximally reduced to 47 +/- 6% of the control. Inhibitory effects were present at conditioning-test intervals up to 150 ms. Excitatory effects of both A delta-and C-fiber sympathetic afferents were reduced by stimulation of the SC-PB region; however, C-fiber input was more powerfully inhibited. Intracardiac injection of the algesic agent bradykinin excited 8 of 12 spinothalamic tract neurons tested; the responding cells increased their activity from 12 +/- 13 to 31 +/- 8 impulses/s. SC-PB stimulation (212 +/- 45 microA) reduced the peak activity caused by bradykinin to 6 +/- 2 impulses/s. Aortic occlusion increased the discharge rate of 5 out of 8 neurons from 13 +/- 3 to 21 +/- 4 impulses/s. At the peak of the response of aortic occlusion, SC-PB stimulation (238 +/- 20 microA) decreased neuron activity to 3 +/- 0 impulses/s. Effective sites for inhibition of spinothalamic tract cell activity were located in the lateral and medial parabrachial nuclei and the nucleus subcoeruleus. This study demonstrates that stimulation of the dorsolateral pons can inhibit the responses of upper thoracic spinothalamic tract neurons to cardiopulmonary sympathetic afferent input. Our laboratory previously has shown that stimulation of cardiopulmonary vagal afferents inhibits spinothalamic tract cells via supraspinal mechanisms. The SC-PB region may be a site activated by cardiac vagal afferents during ischemia and therefore, may be involved in the etiology of painless myocardial infarctions.

UI MeSH Term Description Entries
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000320 Adrenergic Fibers Nerve fibers liberating catecholamines at a synapse after an impulse. Sympathetic Fibers,Adrenergic Fiber,Fiber, Adrenergic,Fiber, Sympathetic,Fibers, Adrenergic,Fibers, Sympathetic,Sympathetic Fiber
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013133 Spinothalamic Tracts A bundle of NERVE FIBERS connecting each posterior horn of the spinal cord to the opposite side of the THALAMUS, carrying information about pain, temperature, and touch. It is one of two major routes by which afferent spinal NERVE FIBERS carrying sensations of somaesthesis are transmitted to the THALAMUS. Spinothalamic Tract,Tract, Spinothalamic,Tracts, Spinothalamic

Related Publications

T J Brennan, and U T Oh, and M N Girardot, and W S Ammons, and R D Foreman
July 1984, Pain,
T J Brennan, and U T Oh, and M N Girardot, and W S Ammons, and R D Foreman
February 1985, Journal of neurosurgery,
T J Brennan, and U T Oh, and M N Girardot, and W S Ammons, and R D Foreman
November 1984, Pain,
T J Brennan, and U T Oh, and M N Girardot, and W S Ammons, and R D Foreman
September 1976, Brain research,
T J Brennan, and U T Oh, and M N Girardot, and W S Ammons, and R D Foreman
August 1998, Journal of neurophysiology,
T J Brennan, and U T Oh, and M N Girardot, and W S Ammons, and R D Foreman
June 1980, Journal of neurophysiology,
T J Brennan, and U T Oh, and M N Girardot, and W S Ammons, and R D Foreman
July 1984, Pain,
T J Brennan, and U T Oh, and M N Girardot, and W S Ammons, and R D Foreman
March 1980, Brain research,
T J Brennan, and U T Oh, and M N Girardot, and W S Ammons, and R D Foreman
October 1983, Journal of neurophysiology,
Copied contents to your clipboard!