Gluconeogenesis from dihydroxyacetone (DHA), glycerol, lactate, pyruvate or alanine was studied in the absence or in the presence of glucagon in hepatocytes isolated from starved rats or from rats fed a high protein diet for 2-48 h. In both groups, gluconeogenesis from DHA, glycerol, lactate and pyruvate exhibited similar changes over 48 h; the rates of glucose production increased progressively until 24 h and then plateaued. During the early phase (2-11 h), gluconeogenesis from DHA and glycerol were higher than gluconeogenesis from lactate and pyruvate. During the first 24 h of the experiment, gluconeogenesis from alanine displays a kinetic similar to that from lactate or pyruvate. After feeding a high protein diet for 24 to 48 h, gluconeogenesis from alanine was slightly higher than that in starved rats and paralleled the increase in alanine aminotransferase activity. Glucagon stimulated gluconeogenesis from DHA up to 48 h, but with glycerol this effect occurred only during the early phase (2-11 h). Glucagon stimulated gluconeogenesis from lactate, pyruvate or alanine by 1.35-fold throughout the experimental period. These findings suggest that the development of gluconeogenesis during starvation or after feeding a high protein diet displays different kinetics, depending on the substrate used and on the level of entry in the gluconeogenic pathway: triose phosphates or pyruvate.