Differential susceptibility of male and female germ cells to glucocorticoid-mediated signaling. 2024

Steven A Cincotta, and Nainoa Richardson, and Mariko H Foecke, and Diana J Laird
Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States.

While physiologic stress has long been known to impair mammalian reproductive capacity through hormonal dysregulation, mounting evidence now suggests that stress experienced prior to or during gestation may also negatively impact the health of future offspring. Rodent models of gestational physiologic stress can induce neurologic and behavioral changes that persist for up to three generations, suggesting that stress signals can induce lasting epigenetic changes in the germline. Treatment with glucocorticoid stress hormones is sufficient to recapitulate the transgenerational changes seen in physiologic stress models. These hormones are known to bind and activate the glucocorticoid receptor (GR), a ligand-inducible transcription factor, thus implicating GR-mediated signaling as a potential contributor to the transgenerational inheritance of stress-induced phenotypes. Here, we demonstrate dynamic spatiotemporal regulation of GR expression in the mouse germline, showing expression in the fetal oocyte as well as the perinatal and adult spermatogonia. Functionally, we find that fetal oocytes are intrinsically buffered against changes in GR signaling, as neither genetic deletion of GR nor GR agonism with dexamethasone altered the transcriptional landscape or the progression of fetal oocytes through meiosis. In contrast, our studies revealed that the male germline is susceptible to glucocorticoid-mediated signaling, specifically by regulating RNA splicing within the spermatogonia, although this does not abrogate fertility. Together, our work suggests a sexually dimorphic function for GR in the germline, and represents an important step towards understanding the mechanisms by which stress can modulate the transmission of genetic information through the germline.

UI MeSH Term Description Entries
D008297 Male Males
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D005260 Female Females
D005854 Germ Cells The reproductive cells in multicellular organisms at various stages during GAMETOGENESIS. Gamete,Gametes,Germ-Line Cells,Germ Line,Cell, Germ,Cell, Germ-Line,Cells, Germ,Cells, Germ-Line,Germ Cell,Germ Line Cells,Germ Lines,Germ-Line Cell
D005938 Glucocorticoids A group of CORTICOSTEROIDS that affect carbohydrate metabolism (GLUCONEOGENESIS, liver glycogen deposition, elevation of BLOOD SUGAR), inhibit ADRENOCORTICOTROPIC HORMONE secretion, and possess pronounced anti-inflammatory activity. They also play a role in fat and protein metabolism, maintenance of arterial blood pressure, alteration of the connective tissue response to injury, reduction in the number of circulating lymphocytes, and functioning of the central nervous system. Glucocorticoid,Glucocorticoid Effect,Glucorticoid Effects,Effect, Glucocorticoid,Effects, Glucorticoid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription

Related Publications

Steven A Cincotta, and Nainoa Richardson, and Mariko H Foecke, and Diana J Laird
February 2009, Nutrition journal,
Steven A Cincotta, and Nainoa Richardson, and Mariko H Foecke, and Diana J Laird
January 2001, The International journal of developmental biology,
Steven A Cincotta, and Nainoa Richardson, and Mariko H Foecke, and Diana J Laird
January 2017, Progress in molecular and subcellular biology,
Steven A Cincotta, and Nainoa Richardson, and Mariko H Foecke, and Diana J Laird
February 2018, Reproduction (Cambridge, England),
Steven A Cincotta, and Nainoa Richardson, and Mariko H Foecke, and Diana J Laird
January 2013, Development (Cambridge, England),
Steven A Cincotta, and Nainoa Richardson, and Mariko H Foecke, and Diana J Laird
July 2018, Tropical medicine and infectious disease,
Steven A Cincotta, and Nainoa Richardson, and Mariko H Foecke, and Diana J Laird
January 2017, Oxidative medicine and cellular longevity,
Steven A Cincotta, and Nainoa Richardson, and Mariko H Foecke, and Diana J Laird
September 1965, Canadian journal of genetics and cytology. Journal canadien de genetique et de cytologie,
Steven A Cincotta, and Nainoa Richardson, and Mariko H Foecke, and Diana J Laird
August 1982, Journal of embryology and experimental morphology,
Steven A Cincotta, and Nainoa Richardson, and Mariko H Foecke, and Diana J Laird
February 2014, Molecular biology and evolution,
Copied contents to your clipboard!