Reorganization of the mouse oocyte' cytoskeleton after cultivation under simulated weightlessness. 2024

Maria A Sventitskaya, and Irina V Ogneva
Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoeshosse, Moscow, 123007, Russia; I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow, 119991, Russia. Electronic address: ma_sventitskaya@mail.ru.

Female germ cells provide the structural basis for the development of a new organism, while the main molecular mechanisms of the impact of weightlessness on the cell remain unknown. The aim of this work was to determine the relative content and distribution of the main proteins of microtubules and microfilaments, to assess the relative RNA content of genes in mouse oocytes after short-term exposure to simulated microgravity, and to determine the potential for embryo development up to the 3-cell stage. Before starting the study, BALB/c mice were divided into two groups. One group received water and standard food without any modifications. Before exposure to simulated microgravity, the oocytes of these animals were randomly divided into two groups - c and µg. The second group of animals additionally received essential phospholipids containing at least 80% phosphatidylcholines, per os for 6 weeks before the start of the experiment at a dosage of 350 mg/kg of the animal's body to modify the lipid composition of the oocyte membrane. The obtained oocytes of these animals were also randomly divided into two groups - ce and µge. To determine the protein distribution and its relative content, immunofluorescence analysis was performed, and the RNA content of genes was assessed using real-time PCR with reverse transcription. After cultivation under simulated microgravity, beta-actin and acetylated alpha-tubulin are redistributed from the cortical layer to the central part of the oocyte, and the relative content of acetylated alpha-tubulin and tubulin isoforms decreases. At the same time, the mRNA content of most genes encoding cytoskeletal proteins was significantly higher in comparison with the control level. The use of essential phospholipids led to a decrease in the content of cellular cholesterol in the oocyte and leveled changes in the content and redistribution of acetylated alpha-tubulin and beta-actin after cultivation under simulated microgravity. In addition, after in vitro fertilization and further cultivation under simulated weightlessness, we observed a decrease in the number of embryos that passed the stage of the 2-cell embryo, but while taking essential phospholipids, the number of embryos that reached the 3-cell stage did not differ from the control group. The results obtained show changes in the content and redistribution of cytoskeletal proteins in the oocyte, which may be involved in the process of pronucleus migration, the formation of the fission spindle and the contractile ring under simulated weightlessness, which may be important for normal fertilization and cleavage of the future embryo.

UI MeSH Term Description Entries
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D005260 Female Females
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D014404 Tubulin A microtubule subunit protein found in large quantities in mammalian brain. It has also been isolated from SPERM FLAGELLUM; CILIA; and other sources. Structurally, the protein is a dimer with a molecular weight of approximately 120,000 and a sedimentation coefficient of 5.8S. It binds to COLCHICINE; VINCRISTINE; and VINBLASTINE. alpha-Tubulin,beta-Tubulin,delta-Tubulin,epsilon-Tubulin,gamma-Tubulin,alpha Tubulin,beta Tubulin,delta Tubulin,epsilon Tubulin,gamma Tubulin
D014893 Weightlessness Condition in which no acceleration, whether due to gravity or any other force, can be detected by an observer within a system. It also means the absence of weight or the absence of the force of gravity acting on a body. Microgravity, gravitational force between 0 and 10 -6 g, is included here. (From NASA Thesaurus, 1988) Microgravity,Zero Gravity,Gravity, Zero

Related Publications

Maria A Sventitskaya, and Irina V Ogneva
June 1997, Hang tian yi xue yu yi xue gong cheng = Space medicine & medical engineering,
Maria A Sventitskaya, and Irina V Ogneva
April 2016, Sheng li xue bao : [Acta physiologica Sinica],
Maria A Sventitskaya, and Irina V Ogneva
December 2000, Hang tian yi xue yu yi xue gong cheng = Space medicine & medical engineering,
Maria A Sventitskaya, and Irina V Ogneva
October 1979, Aviation, space, and environmental medicine,
Maria A Sventitskaya, and Irina V Ogneva
July 2009, Brain research,
Maria A Sventitskaya, and Irina V Ogneva
November 1998, Brain research. Brain research reviews,
Maria A Sventitskaya, and Irina V Ogneva
September 1999, Clinical physiology (Oxford, England),
Maria A Sventitskaya, and Irina V Ogneva
January 1991, Cell motility and the cytoskeleton,
Maria A Sventitskaya, and Irina V Ogneva
April 2002, Hang tian yi xue yu yi xue gong cheng = Space medicine & medical engineering,
Copied contents to your clipboard!