Reliability of Spectral Features of Resting-State Brain Activity: A Magnetoencephalography Study. 2024

Eiichi Okumura, and Hideyuki Hoshi, and Hirofumi Morise, and Naohiro Okumura, and Keisuke Fukasawa, and Sayuri Ichikawa, and Takashi Asakawa, and Yoshihito Shigihara
Medical Imaging Business Center, Ricoh Company, Ltd., Kanazawa, JPN.

Background Cognition is a vital sign and its deterioration is a major concern in clinical medicine. It is usually evaluated using neuropsychological assessments, which have innate limitations such as the practice effect. To compensate for these assessments, the oscillatory power of resting-state brain activity has recently become available. The power is obtained noninvasively using magnetoencephalography and is summarized by spectral parameters such as the median frequency (MF), individual alpha frequency (IAF), spectral edge frequency 95 (SEF95), and Shannon's spectral entropy (SSE). As these parameters are less sensitive to practice effects, they are suitable for longitudinal studies. However, their reliability remains unestablished, hindering their proactive use in clinical practice. Therefore, we aimed to quantify the within-participant reliability of these parameters using repeated measurements of healthy participants to facilitate their clinical use and to evaluate the observed changes/differences in these parameters reported in previous studies. Methodology Resting-state brain activity with eyes closed was recorded using magnetoencephalography for five minutes from 15 healthy individuals (29.3 ± 4.6 years old: ranging from 23 to 28 years old). The following four spectral parameters were calculated: MF, IAF, SEF95, and SSE. To quantify reliability, the minimal detectable change (MDC) and intraclass correlation coefficient (ICC) were computed for each parameter. In addition, we used MDCs to evaluate the changes and differences in the spectral parameters reported in previous longitudinal and cross-sectional studies. Results The MDC at 95% confidence interval (MDC95) of MF, IAF, SEF95, and SSE were 0.61 Hz, 0.44 Hz, 2.91 Hz, and 0.028, respectively. The ICCs of these parameters were 0.96, 0.92, 0.94, and 0.83, respectively. The MDC95 of these parameters was smaller than the mean difference in the parameters between cognitively healthy individuals and patients with dementia, as reported in previous studies. Conclusions The spectral parameter changes/differences observed in prior studies were not attributed to measurement errors but rather reflected genuine effects. Furthermore, all spectral parameters exhibited high ICCs (>0.8), underscoring their robust within-participant reliability. Our results support the clinical use of these parameters, especially in the longitudinal monitoring and evaluation of the outcomes of interventions.

UI MeSH Term Description Entries

Related Publications

Eiichi Okumura, and Hideyuki Hoshi, and Hirofumi Morise, and Naohiro Okumura, and Keisuke Fukasawa, and Sayuri Ichikawa, and Takashi Asakawa, and Yoshihito Shigihara
January 2015, The journal of headache and pain,
Eiichi Okumura, and Hideyuki Hoshi, and Hirofumi Morise, and Naohiro Okumura, and Keisuke Fukasawa, and Sayuri Ichikawa, and Takashi Asakawa, and Yoshihito Shigihara
August 2016, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
Eiichi Okumura, and Hideyuki Hoshi, and Hirofumi Morise, and Naohiro Okumura, and Keisuke Fukasawa, and Sayuri Ichikawa, and Takashi Asakawa, and Yoshihito Shigihara
November 2020, Aging,
Eiichi Okumura, and Hideyuki Hoshi, and Hirofumi Morise, and Naohiro Okumura, and Keisuke Fukasawa, and Sayuri Ichikawa, and Takashi Asakawa, and Yoshihito Shigihara
May 2008, Journal of neuro-oncology,
Eiichi Okumura, and Hideyuki Hoshi, and Hirofumi Morise, and Naohiro Okumura, and Keisuke Fukasawa, and Sayuri Ichikawa, and Takashi Asakawa, and Yoshihito Shigihara
January 2021, Frontiers in human neuroscience,
Eiichi Okumura, and Hideyuki Hoshi, and Hirofumi Morise, and Naohiro Okumura, and Keisuke Fukasawa, and Sayuri Ichikawa, and Takashi Asakawa, and Yoshihito Shigihara
October 2013, Journal of neurotrauma,
Eiichi Okumura, and Hideyuki Hoshi, and Hirofumi Morise, and Naohiro Okumura, and Keisuke Fukasawa, and Sayuri Ichikawa, and Takashi Asakawa, and Yoshihito Shigihara
April 2024, The journal of pain,
Eiichi Okumura, and Hideyuki Hoshi, and Hirofumi Morise, and Naohiro Okumura, and Keisuke Fukasawa, and Sayuri Ichikawa, and Takashi Asakawa, and Yoshihito Shigihara
July 2016, Brain connectivity,
Eiichi Okumura, and Hideyuki Hoshi, and Hirofumi Morise, and Naohiro Okumura, and Keisuke Fukasawa, and Sayuri Ichikawa, and Takashi Asakawa, and Yoshihito Shigihara
January 2020, Frontiers in psychiatry,
Eiichi Okumura, and Hideyuki Hoshi, and Hirofumi Morise, and Naohiro Okumura, and Keisuke Fukasawa, and Sayuri Ichikawa, and Takashi Asakawa, and Yoshihito Shigihara
September 2020, Bipolar disorders,
Copied contents to your clipboard!