Dynamics of appearance and disappearance of the ripple structure in multilamellar liposomes of dipalmitoylphosphatidylcholine. 1987

K Tsuchida, and K Ohki, and T Sekiya, and Y Nozawa, and I Hatta

The physical properties of the pretransition (P beta'----L beta') of dipalmitoylphosphatidylcholine liposomes were investigated using freeze-fracture electron microscopy. The kinetics of pretransition examined in the previous paper using TEMPO spin probe (Tsuchida, K., et al. (1985) Biochim. Biophys. Acta 812, 249-254) was extensively studied by observing the ripple structures in the freeze-fractured surfaces at different time intervals. When the temperature is decreased from 38 degrees C to 30 degrees C, the ripple structure disappears in the following steps. The intervals between ripples begin to expand with the decrease of ripple density upon the temperature shift, and this process continues for several tens minutes. Then, each ripple disappears gradually and changes into a completely smooth surface at 3 h after the temperature shift. The comparison of relaxation times between the previous ESR measurement and the present experiment suggests that the fast relaxation observed in the previous study corresponds to the expansion of the intervals between ripples. On the other hand, the ripple structure of regular intervals appears rapidly in some places and then spreads over the whole area of fractured surface when the temperature is increased from 23 degrees C to 35 degrees C. The results obtained in this work and the previous ESR work strongly suggest that the formation and disappearance of ripple structure is closely related to the relaxation processes near the pretransition temperature.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions
D015060 1,2-Dipalmitoylphosphatidylcholine Synthetic phospholipid used in liposomes and lipid bilayers to study biological membranes. It is also a major constituent of PULMONARY SURFACTANTS. Dipalmitoyllecithin,1,2-Dihexadecyl-sn-Glycerophosphocholine,1,2-Dipalmitoyl-Glycerophosphocholine,Dipalmitoyl Phosphatidylcholine,Dipalmitoylglycerophosphocholine,Dipalmitoylphosphatidylcholine,1,2 Dihexadecyl sn Glycerophosphocholine,1,2 Dipalmitoyl Glycerophosphocholine,1,2 Dipalmitoylphosphatidylcholine,Phosphatidylcholine, Dipalmitoyl

Related Publications

K Tsuchida, and K Ohki, and T Sekiya, and Y Nozawa, and I Hatta
February 1979, Biochemistry,
K Tsuchida, and K Ohki, and T Sekiya, and Y Nozawa, and I Hatta
February 1994, Journal of inorganic biochemistry,
K Tsuchida, and K Ohki, and T Sekiya, and Y Nozawa, and I Hatta
October 1978, Proceedings of the National Academy of Sciences of the United States of America,
K Tsuchida, and K Ohki, and T Sekiya, and Y Nozawa, and I Hatta
November 1988, Biochimica et biophysica acta,
K Tsuchida, and K Ohki, and T Sekiya, and Y Nozawa, and I Hatta
April 2012, Cell biochemistry and biophysics,
K Tsuchida, and K Ohki, and T Sekiya, and Y Nozawa, and I Hatta
November 1978, Stain technology,
K Tsuchida, and K Ohki, and T Sekiya, and Y Nozawa, and I Hatta
October 1996, Biochimica et biophysica acta,
K Tsuchida, and K Ohki, and T Sekiya, and Y Nozawa, and I Hatta
January 1984, Journal of pharmaceutical sciences,
K Tsuchida, and K Ohki, and T Sekiya, and Y Nozawa, and I Hatta
May 2012, Langmuir : the ACS journal of surfaces and colloids,
Copied contents to your clipboard!