Role of radical cations in aromatic hydrocarbon carcinogenesis. 1985

E Cavalieri, and E Rogan

Carcinogenic activation of polycyclic aromatic hydrocarbons (PAH) involves two main pathways: one-electron oxidation and monooxygenation. One-electron oxidation produces PAH radical cations, which can react with cellular nucleophiles. Results from biochemical and biological experiments indicate that only PAH with ionization potentials below ca. 7.35 eV can be metabolically activated by one-electron oxidation. In addition, the radical cations of carcinogenic PAH must have relatively high charge localization to react effectively with macromolecules in target cells. Metabolic formation of PAH quinones proceeds through radical cation intermediates. Binding of benzo[a]pyrene (BP) to mouse skin DNA occurs predominantly at C-6, the position of highest charge localization in the BP radical cation, and binding of 6-methyl BP to DNA in mouse skin yields a major adduct with the 6-methyl group bound to the 2-amino group of deoxyguanosine. Studies of carcinogenicity by direct application of PAH to rat mammary gland indicate that only PAH with ionization potentials low enough for activation by one-electron oxidation produce tumors in this target tissue. These constitute some of the results which provide evidence for the involvement of one-electron oxidation in PAH carcinogenesis.

UI MeSH Term Description Entries
D008321 Mammary Glands, Animal MAMMARY GLANDS in the non-human MAMMALS. Mammae,Udder,Animal Mammary Glands,Animal Mammary Gland,Mammary Gland, Animal,Udders
D008325 Mammary Neoplasms, Experimental Experimentally induced mammary neoplasms in animals to provide a model for studying human BREAST NEOPLASMS. Experimental Mammary Neoplasms,Neoplasms, Experimental Mammary,Experimental Mammary Neoplasm,Mammary Neoplasm, Experimental,Neoplasm, Experimental Mammary
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011083 Polycyclic Compounds Compounds which contain two or more rings in their structure. Compounds, Polycyclic
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004583 Electrons Stable elementary particles having the smallest known negative charge, present in all elements; also called negatrons. Positively charged electrons are called positrons. The numbers, energies and arrangement of electrons around atomic nuclei determine the chemical identities of elements. Beams of electrons are called CATHODE RAYS. Fast Electrons,Negatrons,Positrons,Electron,Electron, Fast,Electrons, Fast,Fast Electron,Negatron,Positron
D005260 Female Females
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish

Related Publications

E Cavalieri, and E Rogan
January 1985, Carcinogenesis; a comprehensive survey,
E Cavalieri, and E Rogan
July 1996, Journal of the American Society for Mass Spectrometry,
E Cavalieri, and E Rogan
January 1974, Advances in cancer research,
E Cavalieri, and E Rogan
September 2013, The journal of physical chemistry. A,
E Cavalieri, and E Rogan
December 2017, Physical chemistry chemical physics : PCCP,
E Cavalieri, and E Rogan
March 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,
E Cavalieri, and E Rogan
January 1980, Carcinogenesis; a comprehensive survey,
Copied contents to your clipboard!