Quantitative analysis of development of mitochondrial ultrastructure in differentiating mouse hepatocytes during postnatal period. 1985

S Kanamura, and K Kanai, and M Oka, and Y Shugyo, and J Watanabe

Between birth and 10 days of age, the volume density (volume/unit cytoplasmic volume) of the matrix, and the surface density (area/unit cytoplasmic volume) of the inner membrane and cristae increased in both periportal and perihepatic hepatocytes, and did not differ significantly between the cells of the two zones. After 10 days of age, however, the volume density of the matrix decreased in perihepatic cells and remained unchanged in periportal cells, and, therefore, it became greater in periportal cells than in perihepatic cells in 20-day-old and adult animals. The surface density of the inner membrane and cristae decreased in the cells of both zones. Further, the hepatocyte volume increased markedly, especially in perihepatic zones between 20 days of age and the adult. The results show that, in postnatally differentiating hepatocytes, mitochondria are likely to develop during early postnatal period, then the structural heterogeneity of mitochondria arises, and hepatocyte volume increases markedly during late postnatal period after weaning. Thus, the process of postnatal hepatocyte differentiation includes such several phases of development.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals

Related Publications

S Kanamura, and K Kanai, and M Oka, and Y Shugyo, and J Watanabe
January 1980, Anatomy and embryology,
S Kanamura, and K Kanai, and M Oka, and Y Shugyo, and J Watanabe
January 2004, Neuro endocrinology letters,
S Kanamura, and K Kanai, and M Oka, and Y Shugyo, and J Watanabe
January 1979, Experimentelle Pathologie,
S Kanamura, and K Kanai, and M Oka, and Y Shugyo, and J Watanabe
June 1981, Tsitologiia,
S Kanamura, and K Kanai, and M Oka, and Y Shugyo, and J Watanabe
January 2018, PloS one,
S Kanamura, and K Kanai, and M Oka, and Y Shugyo, and J Watanabe
August 1979, European journal of cell biology,
S Kanamura, and K Kanai, and M Oka, and Y Shugyo, and J Watanabe
January 2016, The Chinese journal of dental research,
S Kanamura, and K Kanai, and M Oka, and Y Shugyo, and J Watanabe
November 1976, Journal of neurochemistry,
S Kanamura, and K Kanai, and M Oka, and Y Shugyo, and J Watanabe
January 2015, Journal of neurophysiology,
Copied contents to your clipboard!