Influence of glycophorin incorporation on Ca2+-induced fusion of phosphatidylserine vesicles. 1985

A I de Kroon, and P van Hoogevest, and W S Geurts van Kessel, and B de Kruijff

The effect of incorporation of glycophorin, the major integral sialoglycoprotein of the erythrocyte membrane, into bovine brain phosphatidylserine (PS) vesicles on the Ca2+-induced fusion of these vesicles has been investigated. Fusion was monitored by the terbium-dipicolinic acid fluorescence assay for the mixing of aqueous contents of the vesicles and by a resonance energy transfer assay that follows the intermixing of membrane lipids. The Ca2+-induced fusion of PS vesicles is completely prevented by incorporation of glycophorin (molar ratio of PS/glycophorin = 400-500:1) for Ca2+ concentrations up to 50 mM. The ability to fuse is partially restored after treating the glycophorin-containing vesicles with neuraminidase, which removes the negatively charged sialic acid residues of glycophorin. Fusion is further facilitated by trypsin treatment, removing the entire extravesicular glycosylated head group of glycophorin. However, Ca2+-induced fusion of enzyme-treated glycophorin-PS vesicles proceeds at a slower rate and to a smaller extent than fusion of protein-free PS vesicles. The influence of the aggregation state of the glycophorin molecules on fusion has been investigated in experiments using wheat germ agglutinin (WGA). Addition of WGA to the glycophorin-PS vesicles does not induce fusion. However, upon subsequent addition of Ca2+, distinct fusion occurs concomitantly with release of vesicle contents. The inhibition of Ca2+-induced fusion of PS vesicles by incorporation of glycophorin is explained by a combination of steric hindrance and electrostatic repulsion between the vesicles by the glycosylated head group of glycophorin and a direct bilayer stabilization by the intramembranous hydrophobic part of the glycophorin molecule.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D006021 Glycophorins The major sialoglycoprotein of human erythrocyte membranes. It consists of at least two sialoglycopeptides and is composed of 60% carbohydrate including sialic acid and 40% protein. It is involved in a number of different biological activities including the binding of MN blood groups, influenza viruses, kidney bean phytohemagglutinin, and wheat germ agglutinin. Erythrocyte Sialoglycoproteins,Glycoconnectin,Glycoconnectins,Glycophorin,Glycophorin D,MN Sialoglycoprotein,Red Blood Cell Membrane Sialoglycoprotein,Glycophorin A,Glycophorin A(M),Glycophorin B,Glycophorin C,Glycophorin E,Glycophorin HA,Ss Erythrocyte Membrane Sialoglycoproteins,Ss Sialoglycoprotein,beta-Sialoglycoprotein,Sialoglycoprotein, MN,Sialoglycoprotein, Ss,Sialoglycoproteins, Erythrocyte,beta Sialoglycoprotein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A I de Kroon, and P van Hoogevest, and W S Geurts van Kessel, and B de Kruijff
September 1996, Archives of biochemistry and biophysics,
A I de Kroon, and P van Hoogevest, and W S Geurts van Kessel, and B de Kruijff
April 1987, Biochimica et biophysica acta,
A I de Kroon, and P van Hoogevest, and W S Geurts van Kessel, and B de Kruijff
February 1985, Biochimica et biophysica acta,
A I de Kroon, and P van Hoogevest, and W S Geurts van Kessel, and B de Kruijff
April 1985, The Journal of biological chemistry,
A I de Kroon, and P van Hoogevest, and W S Geurts van Kessel, and B de Kruijff
December 1989, Biochemical Society transactions,
A I de Kroon, and P van Hoogevest, and W S Geurts van Kessel, and B de Kruijff
September 1978, Proceedings of the National Academy of Sciences of the United States of America,
A I de Kroon, and P van Hoogevest, and W S Geurts van Kessel, and B de Kruijff
November 1985, Biochimica et biophysica acta,
A I de Kroon, and P van Hoogevest, and W S Geurts van Kessel, and B de Kruijff
March 2002, Biochimica et biophysica acta,
A I de Kroon, and P van Hoogevest, and W S Geurts van Kessel, and B de Kruijff
January 1991, Chemistry and physics of lipids,
A I de Kroon, and P van Hoogevest, and W S Geurts van Kessel, and B de Kruijff
November 1988, Chemistry and physics of lipids,
Copied contents to your clipboard!