Nucleotide sequence of the mitochondrial structural genes for cysteine-tRNA and histidine-tRNA of yeast. 1979

J L Bos, and K A Osinga, and G Van der Horst, and P Borst

We have determined the nucleotide sequence of a segment of Saccharomyces cerevisiae mtDNA that contains the structural genes for a cysteine-tRNA and a histidine-tRNA. The genes are approximately 85 bp apart, they do not contain intervening sequences or sequences coding for the 3'-CCA terminus and they are surrounded by nearly pure AT segments. The tRNAs deduced are very AT-rich, 74 and 75 nucleotides long, respectively, and contain one or more unusual features not found in tRNAs from other sources.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

J L Bos, and K A Osinga, and G Van der Horst, and P Borst
November 1979, FEBS letters,
J L Bos, and K A Osinga, and G Van der Horst, and P Borst
October 1978, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
J L Bos, and K A Osinga, and G Van der Horst, and P Borst
April 1980, Nucleic acids research,
J L Bos, and K A Osinga, and G Van der Horst, and P Borst
July 1983, The Journal of biological chemistry,
J L Bos, and K A Osinga, and G Van der Horst, and P Borst
February 1989, Nucleic acids research,
J L Bos, and K A Osinga, and G Van der Horst, and P Borst
May 1992, Nucleic acids research,
J L Bos, and K A Osinga, and G Van der Horst, and P Borst
June 1989, Nucleic acids research,
J L Bos, and K A Osinga, and G Van der Horst, and P Borst
August 1980, Nucleic acids research,
J L Bos, and K A Osinga, and G Van der Horst, and P Borst
August 1982, Nucleic acids research,
J L Bos, and K A Osinga, and G Van der Horst, and P Borst
June 1995, Current genetics,
Copied contents to your clipboard!