Intestinal microbiota modulates neuroinflammatory response and brain injury after neonatal hypoxia-ischemia. 2024

Alexander Drobyshevsky, and Sylvia Synowiec, and Ivan Goussakov, and Rafael Fabres, and Jing Lu, and Michael Caplan
Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, USA.

Premature infants lack a normal intestinal microbial community and also at risk of perinatal hypoxic-ischemic (HI) brain injury, which is considered to be one of the major factors for motor, sensory, and cognitive deficits. We hypothesized that neonatal gut microbiota composition modulated the immune reaction and severity of neonatal H-I brain injury. Neonatal C57BL/6J mouse pups were exposed to H-I protocol consisting of permanent left carotid artery ligation, followed by 8% hypoxia for 60 min. Microbial manipulation groups included 1) antibiotic treatment, E18 (maternal) to P5; 2) antibiotic treatment E18 to P5 + E. coli gavage; 3) antibiotic treatment E18 to P5 + B. infantis gavage; and 4) saline to pups with dams getting fresh water. The extent of brain injury and recovery was measured on MRI. Edematous injury volume was significantly higher in E. coli group than that in B. infantis group and in fresh water group. Gene expression in brains of pro-inflammatory cytokines (IL1β, IL6, IL2, TNF-α and toll-like receptors 2-6) were elevated to a greater extent in the E. coli group at P10, no injury, and at P13, 72 hours after H-I relative to sham control and B. infantis groups. Significant effects of microbiome and brain injury and interaction of these factors were found in abundance of major phyla. The neuroinflammatory response and brain injury after neonatal hypoxia-ischemia are affected by intestinal microbiota, providing opportunities for therapeutic intervention through targeting the early colonization and development of the gut microbiota.

UI MeSH Term Description Entries
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D007511 Ischemia A hypoperfusion of the BLOOD through an organ or tissue caused by a PATHOLOGIC CONSTRICTION or obstruction of its BLOOD VESSELS, or an absence of BLOOD CIRCULATION. Ischemias
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001930 Brain Injuries Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits. Brain Lacerations,Acute Brain Injuries,Brain Injuries, Acute,Brain Injuries, Focal,Focal Brain Injuries,Injuries, Acute Brain,Injuries, Brain,Acute Brain Injury,Brain Injury,Brain Injury, Acute,Brain Injury, Focal,Brain Laceration,Focal Brain Injury,Injuries, Focal Brain,Injury, Acute Brain,Injury, Brain,Injury, Focal Brain,Laceration, Brain,Lacerations, Brain
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000069196 Gastrointestinal Microbiome All of the microbial organisms that naturally exist within the GASTROINTESTINAL TRACT. Enteric Bacteria,Gastric Microbiome,Gastrointestinal Flora,Gastrointestinal Microbial Community,Gastrointestinal Microbiota,Gastrointestinal Microflora,Gut Flora,Gut Microbiome,Gut Microbiota,Gut Microflora,Intestinal Flora,Intestinal Microbiome,Intestinal Microbiota,Intestinal Microflora,Bacteria, Enteric,Flora, Gastrointestinal,Flora, Gut,Flora, Intestinal,Gastric Microbiomes,Gastrointestinal Microbial Communities,Gastrointestinal Microbiomes,Gastrointestinal Microbiotas,Gut Microbiomes,Gut Microbiotas,Intestinal Microbiomes,Intestinal Microbiotas,Microbial Community, Gastrointestinal,Microbiome, Gastric,Microbiome, Gastrointestinal,Microbiome, Gut,Microbiome, Intestinal,Microbiota, Gastrointestinal,Microbiota, Gut,Microbiota, Intestinal,Microflora, Gastrointestinal,Microflora, Gut,Microflora, Intestinal

Related Publications

Alexander Drobyshevsky, and Sylvia Synowiec, and Ivan Goussakov, and Rafael Fabres, and Jing Lu, and Michael Caplan
August 2017, Journal of neuropathology and experimental neurology,
Alexander Drobyshevsky, and Sylvia Synowiec, and Ivan Goussakov, and Rafael Fabres, and Jing Lu, and Michael Caplan
April 2021, Cells,
Alexander Drobyshevsky, and Sylvia Synowiec, and Ivan Goussakov, and Rafael Fabres, and Jing Lu, and Michael Caplan
June 2016, Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology,
Alexander Drobyshevsky, and Sylvia Synowiec, and Ivan Goussakov, and Rafael Fabres, and Jing Lu, and Michael Caplan
November 2016, Oncotarget,
Alexander Drobyshevsky, and Sylvia Synowiec, and Ivan Goussakov, and Rafael Fabres, and Jing Lu, and Michael Caplan
September 2004, Stroke,
Alexander Drobyshevsky, and Sylvia Synowiec, and Ivan Goussakov, and Rafael Fabres, and Jing Lu, and Michael Caplan
January 2011, The Journal of surgical research,
Alexander Drobyshevsky, and Sylvia Synowiec, and Ivan Goussakov, and Rafael Fabres, and Jing Lu, and Michael Caplan
February 2017, Oncotarget,
Alexander Drobyshevsky, and Sylvia Synowiec, and Ivan Goussakov, and Rafael Fabres, and Jing Lu, and Michael Caplan
June 1998, Brain research,
Alexander Drobyshevsky, and Sylvia Synowiec, and Ivan Goussakov, and Rafael Fabres, and Jing Lu, and Michael Caplan
September 2012, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Alexander Drobyshevsky, and Sylvia Synowiec, and Ivan Goussakov, and Rafael Fabres, and Jing Lu, and Michael Caplan
September 2019, Journal of neurochemistry,
Copied contents to your clipboard!