Heat-Resistant Inbred Lines Coordinate the Heat Response Gene Expression Remarkably in Maize (Zea mays L.). 2024

Ming Xue, and Xiaoyue Han, and Luyao Zhang, and Saihua Chen
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China.

High temperatures are increasingly becoming a prominent environmental factor accelerating the adverse influence on the growth and development of maize (Zea mays L.). Therefore, it is critical to identify the key genes and pathways related to heat stress (HS) tolerance in maize. Great challenges have been faced in dissecting genetic mechanisms and uncovering master genes for HS tolerance. Here, Z58D showed more thermotolerance than AF171 at the seedling stage with a lower wilted leaf rate and H2O2 accumulation under HS conditions. Transcriptomic analysis identified 3006 differentially expressed genes (DEGs) in AF171 and 4273 DEGs in Z58D under HS treatments, respectively. Subsequently, GO enrichment analysis showed that commonly upregulated genes in AF171 and Z58D were significantly enriched in the following biological processes, including protein folding, response to heat, response to temperature stimulus and response to hydrogen peroxide. Moreover, the comparison between the two inbred lines under HS showed that response to heat and response to temperature stimulus were significantly over-represented for the 1234 upregulated genes in Z58D. Furthermore, more commonly upregulated genes exhibited higher expression levels in Z58D than AF171. In addition, maize inbred CIMBL55 was verified to be more tolerant than B73, and more commonly upregulated genes also showed higher expression levels in CIMBL55 than B73 under HS. These consistent results indicate that heat-resistant inbred lines may coordinate the remarkable expression of genes in order to recover from HS. Additionally, 35 DEGs were conserved among five inbred lines via comparative transcriptomic analysis. Most of them were more pronounced in Z58D than AF171 at the expression levels. These candidate genes may confer thermotolerance in maize.

UI MeSH Term Description Entries
D003313 Zea mays A plant species of the family POACEAE. It is a tall grass grown for its EDIBLE GRAIN, corn, used as food and animal FODDER. Corn,Indian Corn,Maize,Teosinte,Zea,Corn, Indian
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D059467 Transcriptome The pattern of GENE EXPRESSION at the level of genetic transcription in a specific organism or under specific circumstances in specific cells. Transcriptomes,Gene Expression Profiles,Gene Expression Signatures,Transcriptome Profiles,Expression Profile, Gene,Expression Profiles, Gene,Expression Signature, Gene,Expression Signatures, Gene,Gene Expression Profile,Gene Expression Signature,Profile, Gene Expression,Profile, Transcriptome,Profiles, Gene Expression,Profiles, Transcriptome,Signature, Gene Expression,Signatures, Gene Expression,Transcriptome Profile
D018869 Heat-Shock Response A sequence of responses that occur when an organism is exposed to excessive heat. In humans, an increase in skin temperature triggers muscle relaxation, sweating, and vasodilation. Heat-Shock Reaction,Heat Shock,Heat Shock Stress,Heat Stress,Heat-Stress Reaction,Heat-Stress Response,Heat Shock Reaction,Heat Shock Response,Heat Shock Stresses,Heat Shocks,Heat Stress Reaction,Heat Stress Response,Heat Stresses,Heat-Shock Reactions,Heat-Shock Responses,Heat-Stress Reactions,Heat-Stress Responses,Shock, Heat,Stress, Heat,Stress, Heat Shock
D020869 Gene Expression Profiling The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell. Gene Expression Analysis,Gene Expression Pattern Analysis,Transcript Expression Analysis,Transcriptome Profiling,Transcriptomics,mRNA Differential Display,Gene Expression Monitoring,Transcriptome Analysis,Analyses, Gene Expression,Analyses, Transcript Expression,Analyses, Transcriptome,Analysis, Gene Expression,Analysis, Transcript Expression,Analysis, Transcriptome,Differential Display, mRNA,Differential Displays, mRNA,Expression Analyses, Gene,Expression Analysis, Gene,Gene Expression Analyses,Gene Expression Monitorings,Gene Expression Profilings,Monitoring, Gene Expression,Monitorings, Gene Expression,Profiling, Gene Expression,Profiling, Transcriptome,Profilings, Gene Expression,Profilings, Transcriptome,Transcript Expression Analyses,Transcriptome Analyses,Transcriptome Profilings,mRNA Differential Displays

Related Publications

Ming Xue, and Xiaoyue Han, and Luyao Zhang, and Saihua Chen
June 2023, International journal of molecular sciences,
Ming Xue, and Xiaoyue Han, and Luyao Zhang, and Saihua Chen
January 2010, TSitologiia i genetika,
Ming Xue, and Xiaoyue Han, and Luyao Zhang, and Saihua Chen
January 2024, PloS one,
Ming Xue, and Xiaoyue Han, and Luyao Zhang, and Saihua Chen
August 2002, Planta,
Ming Xue, and Xiaoyue Han, and Luyao Zhang, and Saihua Chen
March 2022, Protoplasma,
Ming Xue, and Xiaoyue Han, and Luyao Zhang, and Saihua Chen
April 2019, Gene,
Ming Xue, and Xiaoyue Han, and Luyao Zhang, and Saihua Chen
January 2006, Methods in molecular biology (Clifton, N.J.),
Ming Xue, and Xiaoyue Han, and Luyao Zhang, and Saihua Chen
January 2015, Methods in molecular biology (Clifton, N.J.),
Ming Xue, and Xiaoyue Han, and Luyao Zhang, and Saihua Chen
June 1991, Electrophoresis,
Copied contents to your clipboard!