An energy efficiency assessment of Yttrium-aluminum-garnet laser in vitro. 2024

Tiezhu Lin, and Di Wang, and Lijun Shen
Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People' Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.

To study the effect range of the Nd:YAG laser through various levels of cloudy medium for targets with varying grayscale values in vitro. The coated paper cards with grayscale values of 0, 50, 100, and 150 were used as the laser's targets, which were struck straightly with varying energies using three burst modes (single pulse, double pulse, and triple pulse). Six filters (transmittances of 40, 50, 60, 70, 80, and 90) were applied to simulate various levels of cloudy refractive medium. Image J software was used to measure the diameters and regions of the laser spots. The ranges of the Nd:YAG laser spots increased with energy in the same burst mode (P < 0.05). Under the same amount of energy, the ranges of the Nd:YAG laser spot increased with the grayscale value of the targets (P < 0.05). The greater the transmittance of the filters employed, the larger the range of the Nd: YAG laser spots produced. Assuming that the total pulse energy is identical, the effect ranges of multi-pulse burst modes were significantly larger than those of single-pulse burst mode (P < 0.05). The effect range of a Nd:YAG laser grows with increasing energy and the target's grayscale value. A cloudy refractive medium has a negative impact on the effect range of the Nd: YAG laser. The single pulse mode has the narrowest and safest efficiency range.

UI MeSH Term Description Entries
D003246 Conservation of Energy Resources Planned management, use, and preservation of energy resources. Energy Resources Conservation,Conservation, Energy Resources,Conservations, Energy Resources,Energy Resources Conservations,Resources Conservation, Energy,Resources Conservations, Energy
D000535 Aluminum A metallic element that has the atomic number 13, atomic symbol Al, and atomic weight 26.98. Aluminium,Aluminium-27,Aluminum-27,Aluminium 27,Aluminum 27
D015019 Yttrium An element of the rare earth family of metals. It has the atomic symbol Y, atomic number 39, and atomic weight 88.91. In conjunction with other rare earths, yttrium is used as a phosphor in television receivers and is a component of the yttrium-aluminum garnet (YAG) lasers.
D053844 Lasers, Solid-State Lasers which use a solid, as opposed to a liquid or gas, as the lasing medium. Common materials used are crystals, such as YAG (YTTRIUM aluminum garnet); alexandrite; and CORUNDUM, doped with a rare earth element such as a NEODYMIUM; ERBIUM; or HOLMIUM. The output is sometimes additionally modified by addition of non-linear optical materials such as potassium titanyl phosphate crystal, which for example is used with neodymium YAG lasers to convert the output light to the visible range. Alexandrite Laser,Alexandrite Lasers,Diode Pumped Solid State Laser,Diode Pumped Solid State Lasers,Er-YAG Laser,Er-YAG Lasers,Erbium Doped Yttrium Aluminum Garnet Laser,Erbium YAG Laser,Erbium-Doped Yttrium Aluminum Garnet Laser,Erbium-Doped Yttrium Aluminum Garnet Lasers,Ho YAG Laser,Ho YAG Lasers,Holmium Doped Yttrium Aluminum Garnet Lasers,Holmium Laser,Holmium-YAG Laser,Holmium-YAG Lasers,KTP Laser,Laser, Nd-YAG,Nd-YAG Laser,Nd-YAG Lasers,Neodymium-Doped Yttrium Aluminum Garnet Laser,Neodymium-Doped Yttrium Aluminum Garnet Lasers,Potassium Titanyl Phosphate Laser,Ruby Laser,Ruby Lasers,Solid-State Laser,YAG Laser,YAG Lasers,YLF Laser,YLF Lasers,YSGG Laser,YSGG Lasers,Yttrium Aluminum Garnet Laser,Yttrium-Lithium-Fluoride Laser,Yttrium-Lithium-Fluoride Lasers,Yttrium-Scandium-Gallium Garnet Laser,Yttrium-Scandium-Gallium Garnet Lasers,Erbium YAG Lasers,Holmium Lasers,KTP Lasers,Lasers, Alexandrite,Lasers, Diode Pumped Solid State,Lasers, Er-YAG,Lasers, Erbium-Doped Yttrium Aluminum Garnet,Lasers, Ho-YAG,Lasers, Holmium Doped Yttrium Aluminum Garnet,Lasers, Nd-YAG,Lasers, Neodymium-Doped Yttrium Aluminum Garnet,Lasers, Ruby,Lasers, YAG,Lasers, Yttrium Aluminum Garnet,Lasers, Yttrium-Lithium-Fluoride,Potassium Titanyl Phosphate Lasers,Yttrium Aluminum Garnet Lasers,Er YAG Laser,Er YAG Lasers,Erbium Doped Yttrium Aluminum Garnet Lasers,Ho-YAG Laser,Ho-YAG Lasers,Holmium YAG Laser,Holmium YAG Lasers,Laser, Alexandrite,Laser, Er-YAG,Laser, Erbium YAG,Laser, Ho YAG,Laser, Ho-YAG,Laser, Holmium,Laser, Holmium-YAG,Laser, KTP,Laser, Nd YAG,Laser, Ruby,Laser, Solid-State,Laser, YAG,Laser, YLF,Laser, YSGG,Laser, Yttrium-Lithium-Fluoride,Laser, Yttrium-Scandium-Gallium Garnet,Lasers, Er YAG,Lasers, Erbium Doped Yttrium Aluminum Garnet,Lasers, Erbium YAG,Lasers, Ho YAG,Lasers, Holmium,Lasers, Holmium-YAG,Lasers, KTP,Lasers, Nd YAG,Lasers, Neodymium Doped Yttrium Aluminum Garnet,Lasers, Solid State,Lasers, YLF,Lasers, YSGG,Lasers, Yttrium Lithium Fluoride,Lasers, Yttrium-Scandium-Gallium Garnet,Nd YAG Laser,Nd YAG Lasers,Neodymium Doped Yttrium Aluminum Garnet Laser,Neodymium Doped Yttrium Aluminum Garnet Lasers,Solid State Laser,Solid-State Lasers,YAG Laser, Erbium,YAG Laser, Ho,YAG Lasers, Erbium,YAG Lasers, Ho,Yttrium Lithium Fluoride Laser,Yttrium Lithium Fluoride Lasers,Yttrium Scandium Gallium Garnet Laser,Yttrium Scandium Gallium Garnet Lasers

Related Publications

Tiezhu Lin, and Di Wang, and Lijun Shen
March 2021, Journal of dentistry (Shiraz, Iran),
Tiezhu Lin, and Di Wang, and Lijun Shen
February 1987, The Annals of thoracic surgery,
Tiezhu Lin, and Di Wang, and Lijun Shen
December 2005, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery,
Tiezhu Lin, and Di Wang, and Lijun Shen
October 2018, Nigerian journal of clinical practice,
Tiezhu Lin, and Di Wang, and Lijun Shen
January 1974, Journal of oral pathology,
Tiezhu Lin, and Di Wang, and Lijun Shen
June 1995, Urology,
Tiezhu Lin, and Di Wang, and Lijun Shen
September 1990, Investigative ophthalmology & visual science,
Tiezhu Lin, and Di Wang, and Lijun Shen
August 1986, The Urologic clinics of North America,
Tiezhu Lin, and Di Wang, and Lijun Shen
November 1991, The Annals of thoracic surgery,
Tiezhu Lin, and Di Wang, and Lijun Shen
February 1993, American heart journal,
Copied contents to your clipboard!