In vivo methylation of prokaryotic elongation factor Tu. 1979

G F Ames, and K Niakido

In Salmonella typhimurium and Escherichia coli, elongation factor Tu (EF-Tu) is methylated as shown by its incorporation of labeled methyl residues from [methyl-3H]methionine. Analysis of the nature of the methyl-containing residues by protein hydrolysis, followed by paper chromatography and high voltage electrophoresis showed that both mono- and dimethyllysine are present. Eighty per cent of the EF-Tu molecules are methylated if methylation occurs at a unique lysine residue. The EF-Tu fraction which is not methylated is still able to accept methyl groups, as shown by methylation of approximately 10% of the EF-Tu after addition of chloramphenicol (D-(-)-threo-2,2-dichloro-N-[beta-hydroxy-alpha-(hydroxymethyl)-o-nitrophenethyl] acetamide) to inhibit further protein synthesis. There is no evidence of turnover of the methyl residues. We attempted to separate the methylated from the nonmethylated form of EF-Tu by isoelectric focusing on polyacrylamide gel, but were unable to do so.

UI MeSH Term Description Entries
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D010445 Peptide Elongation Factors Protein factors uniquely required during the elongation phase of protein synthesis. Elongation Factor,Elongation Factors, Peptide,Factor, Elongation,Factors, Peptide Elongation
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D012486 Salmonella typhimurium A serotype of Salmonella enterica that is a frequent agent of Salmonella gastroenteritis in humans. It also causes PARATYPHOID FEVER. Salmonella typhimurium LT2

Related Publications

G F Ames, and K Niakido
January 1993, The Journal of biological chemistry,
G F Ames, and K Niakido
November 1979, Journal of biochemistry,
G F Ames, and K Niakido
November 1979, FEBS letters,
G F Ames, and K Niakido
September 1990, FEMS microbiology letters,
G F Ames, and K Niakido
September 2014, Proceedings of the National Academy of Sciences of the United States of America,
G F Ames, and K Niakido
November 1985, FEBS letters,
Copied contents to your clipboard!