Regulation of messenger RNA stability in mouse erythroleukemia cells. 1985

A Krowczynska, and R Yenofsky, and G Brawerman

The decay rates of several messenger RNA species were determined in mouse erythroleukemia cells. The t1/2 values for the actin and tubulin mRNAs were 16 to 26 hours and about seven hours, respectively. The globin mRNA, and two mRNA species subject to translation repression, the P40 and P21 mRNAs, were about as stable as the ribosomal RNA. A stable tubulin mRNA component also appeared to be present in the cells. Exposure of the cells to dimethylsulfoxide for 48 hours led to considerable increases in the rates of decay of all but the globin mRNA. The induction of erythroid differentiation caused by the drug appears to lead to activation of a mRNA-degradation process that affects individual species to different degrees. The newly synthesized actin and tubulin mRNAs lost their poly(A) rather rapidly. This was accompanied by accumulation of poly(A)-deficient mRNA chains, particularly in the case of actin mRNA. The steady-state distribution of mRNA components, determined by Northern blot analysis, also showed that the actin mRNA and one tubulin mRNA species have a high proportion of poly(A)-deficient molecules. The globin, P40 and P21 mRNAs showed little tendency to lose their poly(A) sequence. The steady-state globin and P40 mRNAs also had a low proportion of chains depleted of poly(A). For all five species, the proportions of poly(A)-deficient chains in newly synthesized mRNA were about the same in uninduced and induced cells, in spite of the large decreases in mRNA stability in the induced cells. The lack of correlation between tendency to lose poly(A) and rate of mRNA decay, and the large accumulation of poly(A)-deficient molecules in the cases of the actin and tubulin mRNAs suggest that the stability of mRNA is not determined solely by the presence of poly(A) on the RNA chains. The behavior of the untranslated species in induced and uninduced cells also fails to support the notion of a relationship between translation and mRNA decay.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004915 Leukemia, Erythroblastic, Acute A myeloproliferative disorder characterized by neoplastic proliferation of erythroblastic and myeloblastic elements with atypical erythroblasts and myeloblasts in the peripheral blood. Di Guglielmo's Disease,Erythremic Myelosis,Erythroblastic Leukemia, Acute,Erythroleukemia,Leukemia, Myeloid, Acute, M6,Myeloid Leukemia, Acute, M6,Di Guglielmo Disease,Acute Erythroblastic Leukemia,Acute Erythroblastic Leukemias,Di Guglielmos Disease,Disease, Di Guglielmo,Disease, Di Guglielmo's,Erythremic Myeloses,Erythroblastic Leukemias, Acute,Erythroleukemias,Leukemia, Acute Erythroblastic,Leukemias, Acute Erythroblastic,Myeloses, Erythremic,Myelosis, Erythremic
D005914 Globins A superfamily of proteins containing the globin fold which is composed of 6-8 alpha helices arranged in a characterstic HEME enclosing structure. Globin
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography

Related Publications

A Krowczynska, and R Yenofsky, and G Brawerman
May 1987, BioEssays : news and reviews in molecular, cellular and developmental biology,
A Krowczynska, and R Yenofsky, and G Brawerman
April 1987, Biochemical and biophysical research communications,
A Krowczynska, and R Yenofsky, and G Brawerman
November 1987, Experimental cell research,
A Krowczynska, and R Yenofsky, and G Brawerman
December 1989, Current opinion in cell biology,
A Krowczynska, and R Yenofsky, and G Brawerman
January 2014, Nature,
A Krowczynska, and R Yenofsky, and G Brawerman
October 1977, Cell,
A Krowczynska, and R Yenofsky, and G Brawerman
January 1982, Developmental biology,
A Krowczynska, and R Yenofsky, and G Brawerman
October 1973, Journal of molecular biology,
A Krowczynska, and R Yenofsky, and G Brawerman
January 1979, Cell,
Copied contents to your clipboard!