3-Deazaadenosine-induced disorganization of macrophage microfilaments. 1985

C R Stopford, and G Wolberg, and K L Prus, and R Reynolds-Vaughn, and T P Zimmerman

3-Deazaadenosine (c3Ado) has been reported to inhibit a number of cellular functions. These biological effects of c3Ado have generally been attributed to its ability to act as inhibitor and substrate of S-adenosylhomocysteine hydrolase. In this report, it is revealed by fluorescence microscopy that c3Ado caused disorganization of the microfilament system of mouse macrophages at concentrations (greater than or equal to 5 microM) similar to those that inhibited antibody-dependent phagocytosis and zymosan-stimulated H2O2 production by these cells. Inhibition of phagocytosis and perturbation of microfilaments by c3Ado were completely abrogated by washing the macrophages free of this agent and allowing the cells a 30-min recovery period. Furthermore, these effects of c3Ado on phagocytosis and microfilaments appeared to be independent of the increase in S-adenosylhomocysteine and S-3-deazaadenosylhomocysteine that occurred in these macrophages. First, periodate-oxidized adenosine and 3-deaza(+/-)aristeromycin, two other inhibitors of S-adenosylhomocysteine hydrolase that caused greater increases in macrophage S-adenosylhomocysteine than did c3Ado, had no effect on either phagocytosis or microfilaments. Second, pretreatment of macrophages with periodate-oxidized adenosine (to inhibit S-adenosylhomocysteine hydrolase) prevented the subsequent metabolism of c3Ado to S-3-deazaadenosylhomocysteine but did not diminish the effects of c3Ado on phagocytosis or microfilaments. These results demonstrate that c3Ado can perturb the microfilament system of cells and provide an alternative mechanism for the biological effects of c3Ado.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008297 Male Males
D010545 Peroxides A group of compounds that contain a bivalent O-O group, i.e., the oxygen atoms are univalent. They can either be inorganic or organic in nature. Such compounds release atomic (nascent) oxygen readily. Thus they are strong oxidizing agents and fire hazards when in contact with combustible materials, especially under high-temperature conditions. The chief industrial uses of peroxides are as oxidizing agents, bleaching agents, and initiators of polymerization. (From Hawley's Condensed Chemical Dictionary, 11th ed) Peroxide
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012263 Ribonucleosides Nucleosides in which the purine or pyrimidine base is combined with ribose. (Dorland, 28th ed)
D012435 S-Adenosylhomocysteine 5'-S-(3-Amino-3-carboxypropyl)-5'-thioadenosine. Formed from S-adenosylmethionine after transmethylation reactions. S Adenosylhomocysteine,Adenosylhomocysteine, S

Related Publications

C R Stopford, and G Wolberg, and K L Prus, and R Reynolds-Vaughn, and T P Zimmerman
February 1984, Experimental and molecular pathology,
C R Stopford, and G Wolberg, and K L Prus, and R Reynolds-Vaughn, and T P Zimmerman
January 1984, Gan,
C R Stopford, and G Wolberg, and K L Prus, and R Reynolds-Vaughn, and T P Zimmerman
January 1981, Biochemical and biophysical research communications,
C R Stopford, and G Wolberg, and K L Prus, and R Reynolds-Vaughn, and T P Zimmerman
April 1991, Microbiologica,
C R Stopford, and G Wolberg, and K L Prus, and R Reynolds-Vaughn, and T P Zimmerman
March 2023, Aging,
C R Stopford, and G Wolberg, and K L Prus, and R Reynolds-Vaughn, and T P Zimmerman
November 1998, Annals of clinical biochemistry,
C R Stopford, and G Wolberg, and K L Prus, and R Reynolds-Vaughn, and T P Zimmerman
March 2003, Shock (Augusta, Ga.),
C R Stopford, and G Wolberg, and K L Prus, and R Reynolds-Vaughn, and T P Zimmerman
January 1993, Drug metabolism and disposition: the biological fate of chemicals,
C R Stopford, and G Wolberg, and K L Prus, and R Reynolds-Vaughn, and T P Zimmerman
August 1971, Nature: New biology,
C R Stopford, and G Wolberg, and K L Prus, and R Reynolds-Vaughn, and T P Zimmerman
November 1985, Cancer research,
Copied contents to your clipboard!