Enhanced complement-mediated lysis of type III paroxysmal nocturnal hemoglobinuria erythrocytes involves increased C9 binding and polymerization. 1985

V W Hu, and A Nicholson-Weller

The interaction of terminal complement proteins (C5-C9) with normal erythrocytes and type III paroxysmal nocturnal hemoglobinuria erythrocytes (PNH-E) has been compared in terms of binding of the C5-9 complex, C9 polymerization, and C9 insertion into membranes. Complement components C5, C7, and C8 bind equally well to both types of erythrocytes, whereas the binding of C9 to PNH-E is 5-6 times greater than that to normal erythrocytes. The kinetics of C9 binding was compared with the kinetics of lysis for both types of cells under conditions leading to 100% lysis. There was a noticeable lag time between C9 binding and lysis of normal erythrocytes, but the lysis of PNH-E proceeded without a lag and the kinetics of lysis more closely paralleled C9 binding. The efficiency of C9 insertion was similar for both types of cells, but C9 polymerization was significantly enhanced on PNH-E. These data indicate that the enhanced susceptibility of type III PNH-E toward lysis by C5-9 can be correlated with abnormally high C9 binding and increased formation of poly(C9).

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D003186 Complement C9 A 63-kDa serum glycoprotein encoded by gene C9. Monomeric C9 (mC9) binds the C5b-8 complex to form C5b-9 which catalyzes the polymerization of C9 forming C5b-p9 (MEMBRANE ATTACK COMPLEX) and transmembrane channels leading to lysis of the target cell. Patients with C9 deficiency suffer from recurrent bacterial infections. C9 Complement,Complement 9,Complement Component 9,C9, Complement,Complement, C9,Component 9, Complement
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006457 Hemoglobinuria, Paroxysmal A condition characterized by the recurrence of HEMOGLOBINURIA caused by intravascular HEMOLYSIS. In cases occurring upon cold exposure (paroxysmal cold hemoglobinuria), usually after infections, there is a circulating antibody which is also a cold hemolysin. In cases occurring during or after sleep (paroxysmal nocturnal hemoglobinuria), the clonal hematopoietic stem cells exhibit a global deficiency of cell membrane proteins. Paroxysmal Cold Hemoglobinuria,Paroxysmal Nocturnal Hemoglobinuria,Marchiafava-Micheli Syndrome,Paroxysmal Hemoglobinuria,Paroxysmal Hemoglobinuria, Cold,Paroxysmal Hemoglobinuria, Nocturnal,Cold Paroxysmal Hemoglobinuria,Hemoglobinuria, Cold Paroxysmal,Hemoglobinuria, Nocturnal Paroxysmal,Hemoglobinuria, Paroxysmal Cold,Hemoglobinuria, Paroxysmal Nocturnal,Marchiafava Micheli Syndrome,Nocturnal Paroxysmal Hemoglobinuria,Syndrome, Marchiafava-Micheli
D006461 Hemolysis The destruction of ERYTHROCYTES by many different causal agents such as antibodies, bacteria, chemicals, temperature, and changes in tonicity. Haemolysis,Extravascular Hemolysis,Intravascular Hemolysis,Extravascular Hemolyses,Haemolyses,Hemolyses, Extravascular,Hemolyses, Intravascular,Hemolysis, Extravascular,Hemolysis, Intravascular,Intravascular Hemolyses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

V W Hu, and A Nicholson-Weller
July 1989, Biochemical and biophysical research communications,
V W Hu, and A Nicholson-Weller
January 1974, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
V W Hu, and A Nicholson-Weller
October 1973, The New England journal of medicine,
V W Hu, and A Nicholson-Weller
January 1989, Complement and inflammation,
V W Hu, and A Nicholson-Weller
March 1983, Immunobiology,
Copied contents to your clipboard!