Trans-acting element(s) operating across species barriers positively regulate expression of major histocompatibility complex class II genes. 1985

R S Accolla, and L Scarpellino, and G Carra, and J Guardiola

Raji, a human B lymphoma line, expresses high levels of major histocompatibility complex (MHC) class II antigens. Conversely, none of the detectable human Ia antigens is present in RJ 2.2.5, an immunoselected Raji variant. Clonal analysis, biochemical characterization, and nucleic acid hybridization studies of hybrids between mouse spleen cells and RJ 2.2.5 show that MHC class II gene expression is regulated in trans by a factor which, as judged by dominance studies, has the characteristics of an activator. Such a positive trans acting factor is expressed in mouse spleen cells, and is able to implement MHC class II gene expression across species boundaries. Expression of this factor in spleen cells strongly suggests that it plays a role in in vivo regulation of Ia expression. Additional data suggest that different subsets of class II genes such as DR and DQ may, in part, be regulated by different mechanisms. It has also been possible to show that the amount of In chain-specific mRNA, present at reduced levels in RJ 2.2.5 cells compared to the parental Raji cells, drastically increased in human X mouse cells hybrids reexpressing human Ia antigens, suggesting that the In chain gene and the class II genes, although located on different chromosomes, are regulated in a concerted fashion, either directly through the same implementing factor, or indirectly through a cascade mechanism.

UI MeSH Term Description Entries
D008285 Major Histocompatibility Complex The genetic region which contains the loci of genes which determine the structure of the serologically defined (SD) and lymphocyte-defined (LD) TRANSPLANTATION ANTIGENS, genes which control the structure of the IMMUNE RESPONSE-ASSOCIATED ANTIGENS, HUMAN; the IMMUNE RESPONSE GENES which control the ability of an animal to respond immunologically to antigenic stimuli, and genes which determine the structure and/or level of the first four components of complement. Histocompatibility Complex,Complex, Histocompatibility,Complex, Major Histocompatibility,Complices, Histocompatibility,Complices, Major Histocompatibility,Histocompatibility Complex, Major,Histocompatibility Complices,Histocompatibility Complices, Major,Major Histocompatibility Complices
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006183 H-2 Antigens The major group of transplantation antigens in the mouse. H2 Antigens,Antigens, H-2,Antigens, H2,H 2 Antigens
D006680 HLA Antigens Antigens determined by leukocyte loci found on chromosome 6, the major histocompatibility loci in humans. They are polypeptides or glycoproteins found on most nucleated cells and platelets, determine tissue types for transplantation, and are associated with certain diseases. Human Leukocyte Antigen,Human Leukocyte Antigens,Leukocyte Antigens,HL-A Antigens,Antigen, Human Leukocyte,Antigens, HL-A,Antigens, HLA,Antigens, Human Leukocyte,Antigens, Leukocyte,HL A Antigens,Leukocyte Antigen, Human,Leukocyte Antigens, Human
D006684 HLA-DR Antigens A subclass of HLA-D antigens that consist of alpha and beta chains. The inheritance of HLA-DR antigens differs from that of the HLA-DQ ANTIGENS and HLA-DP ANTIGENS. HLA-DR,Antigens, HLA-DR,HLA DR Antigens
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

R S Accolla, and L Scarpellino, and G Carra, and J Guardiola
January 1990, Journal of immunogenetics,
R S Accolla, and L Scarpellino, and G Carra, and J Guardiola
January 2014, PloS one,
R S Accolla, and L Scarpellino, and G Carra, and J Guardiola
December 1992, Proceedings of the National Academy of Sciences of the United States of America,
R S Accolla, and L Scarpellino, and G Carra, and J Guardiola
February 2011, Current opinion in immunology,
R S Accolla, and L Scarpellino, and G Carra, and J Guardiola
January 2011, Frontiers in immunology,
R S Accolla, and L Scarpellino, and G Carra, and J Guardiola
January 1991, Animal genetics,
R S Accolla, and L Scarpellino, and G Carra, and J Guardiola
November 1991, Clinical immunology and immunopathology,
R S Accolla, and L Scarpellino, and G Carra, and J Guardiola
March 1986, The Mount Sinai journal of medicine, New York,
R S Accolla, and L Scarpellino, and G Carra, and J Guardiola
November 1991, Annals of the rheumatic diseases,
R S Accolla, and L Scarpellino, and G Carra, and J Guardiola
January 1988, Annual review of biochemistry,
Copied contents to your clipboard!