Conjugation of Soybean Proteins 7S/11S Isolate with Glucose/Fructose in Gels through Wet-Heating Maillard Reaction. 2024

Jalal Ud Din, and He Li, and You Li, and Xinqi Liu, and Sam Al-Dalali
Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China.

Conjugation with glucose (G) and fructose (F) via the Maillard reaction under the wet-heating condition is a natural and non-toxic method of improving the technological functions of 7S/11S proteins in different kinds of gels. It may be used as an affordable supply of emulsifiers and an excellent encapsulating matrix for gels. This study aimed to create a glucose/fructose-conjugated 7S/11S soy protein via the Maillard reaction. The conjugation was confirmed by determining the SDS-PAGE profile and circular dichroism spectra. In addition, these conjugates were comprehensively characterized in terms of grafting degree, browning degree, sulfhydryl content, surface hydrophobicity (H0), and differential scanning calorimetry (DSC) through various reaction times (0, 24, 48, and 72 h) to evaluate their ability to be used in food gels. The functional characteristics of the 7S/11S isolate-G/F conjugate formed at 70 °C, with a high degree of glycosylation and browning, were superior to those obtained at other reaction times. The SDS-PAGE profile indicated that the conjugation between the 7S and 11S proteins and carbohydrate sources of G and F through the Maillard reaction occurred. Secondary structural results revealed that covalent interactions with G and F affected the secondary structural components of 7S/11S proteins, leading to increased random coils. When exposed to moist heating conditions, G and F have significant potential for protein alteration through the Maillard reaction. The results of this study may provide new insights into protein modification and establish the theoretical basis for the therapeutic application of both G and F conjugation with soy proteins in different food matrixes and gels.

UI MeSH Term Description Entries

Related Publications

Jalal Ud Din, and He Li, and You Li, and Xinqi Liu, and Sam Al-Dalali
July 2007, Journal of agricultural and food chemistry,
Jalal Ud Din, and He Li, and You Li, and Xinqi Liu, and Sam Al-Dalali
January 2022, Food chemistry,
Jalal Ud Din, and He Li, and You Li, and Xinqi Liu, and Sam Al-Dalali
April 2023, Food chemistry,
Jalal Ud Din, and He Li, and You Li, and Xinqi Liu, and Sam Al-Dalali
March 1981, Plant molecular biology,
Jalal Ud Din, and He Li, and You Li, and Xinqi Liu, and Sam Al-Dalali
January 1977, Preparative biochemistry,
Jalal Ud Din, and He Li, and You Li, and Xinqi Liu, and Sam Al-Dalali
June 2019, International journal of biological macromolecules,
Jalal Ud Din, and He Li, and You Li, and Xinqi Liu, and Sam Al-Dalali
December 2023, Food research international (Ottawa, Ont.),
Jalal Ud Din, and He Li, and You Li, and Xinqi Liu, and Sam Al-Dalali
January 2017, Carbohydrate polymers,
Jalal Ud Din, and He Li, and You Li, and Xinqi Liu, and Sam Al-Dalali
July 2020, Food chemistry,
Jalal Ud Din, and He Li, and You Li, and Xinqi Liu, and Sam Al-Dalali
August 2018, Bioscience, biotechnology, and biochemistry,
Copied contents to your clipboard!