Developmental expression of rat transforming growth factor-alpha mRNA. 1985

D C Lee, and R Rochford, and G J Todaro, and L P Villarreal

Expression of the gene encoding transforming growth factor-alpha (TGF alpha) was examined in developing rat embryos by using a cloned TGF alpha cDNA as a hybridization probe. Northern blot analysis of RNA isolated from whole fetuses revealed that TGF alpha mRNA was present at relatively high levels in 8- through 10-day-old embryos and then declined to the low or undetectable level, which is characteristic of adult tissues before birth. The level of TGF alpha mRNA present during early gestation was similar to that present in retrovirus-transformed cells in culture, suggesting that TGF alpha expression is not highly localized in the embryo. These observations are consistent with the hypothesis that TGF alpha plays a role in development, possibly as a fetal growth factor.

UI MeSH Term Description Entries
D010452 Peptide Biosynthesis The production of PEPTIDES or PROTEINS by the constituents of a living organism. The biosynthesis of proteins on RIBOSOMES following an RNA template is termed translation (TRANSLATION, GENETIC). There are other, non-ribosomal peptide biosynthesis (PEPTIDE BIOSYNTHESIS, NUCLEIC ACID-INDEPENDENT) mechanisms carried out by PEPTIDE SYNTHASES and PEPTIDYLTRANSFERASES. Further modifications of peptide chains yield functional peptide and protein molecules. Biosynthesis, Peptide
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015291 Transforming Growth Factors Hormonally active polypeptides that can induce the transformed phenotype when added to normal, non-transformed cells. They have been found in culture fluids from retrovirally transformed cells and in tumor-derived cells as well as in non-neoplastic sources. Their transforming activities are due to the simultaneous action of two otherwise unrelated factors, TRANSFORMING GROWTH FACTOR ALPHA and TRANSFORMING GROWTH FACTOR BETA. Transforming Growth Factor,Factor, Transforming Growth,Factors, Transforming Growth,Growth Factor, Transforming,Growth Factors, Transforming
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

D C Lee, and R Rochford, and G J Todaro, and L P Villarreal
April 1991, Neuroscience letters,
D C Lee, and R Rochford, and G J Todaro, and L P Villarreal
May 1993, Journal of neurochemistry,
D C Lee, and R Rochford, and G J Todaro, and L P Villarreal
July 1992, Histology and histopathology,
D C Lee, and R Rochford, and G J Todaro, and L P Villarreal
June 1994, Inflammation,
D C Lee, and R Rochford, and G J Todaro, and L P Villarreal
July 1987, Molecular and cellular biology,
D C Lee, and R Rochford, and G J Todaro, and L P Villarreal
June 1999, Histochemistry and cell biology,
D C Lee, and R Rochford, and G J Todaro, and L P Villarreal
January 1996, Investigative ophthalmology & visual science,
D C Lee, and R Rochford, and G J Todaro, and L P Villarreal
January 1995, Regulatory peptides,
D C Lee, and R Rochford, and G J Todaro, and L P Villarreal
May 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D C Lee, and R Rochford, and G J Todaro, and L P Villarreal
October 1994, FEBS letters,
Copied contents to your clipboard!