Analysis of a recessive plasmid copy number mutant: evidence for negative control of Col E1 replication. 1979

H M Shepard, and D H Gelfand, and B Polisky

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003086 Bacteriocin Plasmids Plasmids encoding bacterial exotoxins (BACTERIOCINS). Bacteriocin Factors,Col Factors,Colicin Factors,Colicin Plasmids,Bacteriocin Factor,Bacteriocin Plasmid,Col Factor,Colicin Factor,Colicin Plasmid,Factor, Bacteriocin,Factor, Col,Factor, Colicin,Factors, Bacteriocin,Factors, Col,Factors, Colicin,Plasmid, Bacteriocin,Plasmid, Colicin,Plasmids, Bacteriocin,Plasmids, Colicin
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005808 Genes, Recessive Genes that influence the PHENOTYPE only in the homozygous state. Conditions, Recessive Genetic,Genetic Conditions, Recessive,Recessive Genetic Conditions,Condition, Recessive Genetic,Gene, Recessive,Genetic Condition, Recessive,Recessive Gene,Recessive Genes,Recessive Genetic Condition
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

H M Shepard, and D H Gelfand, and B Polisky
October 1978, Molecular & general genetics : MGG,
H M Shepard, and D H Gelfand, and B Polisky
March 1991, Molecular microbiology,
H M Shepard, and D H Gelfand, and B Polisky
November 1986, Journal of molecular biology,
H M Shepard, and D H Gelfand, and B Polisky
March 1984, Plasmid,
H M Shepard, and D H Gelfand, and B Polisky
July 1980, Proceedings of the National Academy of Sciences of the United States of America,
H M Shepard, and D H Gelfand, and B Polisky
January 1985, Basic life sciences,
H M Shepard, and D H Gelfand, and B Polisky
January 1989, Yi chuan xue bao = Acta genetica Sinica,
H M Shepard, and D H Gelfand, and B Polisky
April 1992, Gene,
H M Shepard, and D H Gelfand, and B Polisky
August 1979, Indian journal of biochemistry & biophysics,
Copied contents to your clipboard!